В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ноген1
ноген1
28.07.2021 13:11 •  Алгебра

Cos x + (корень из 2)sin (23p/2 + x/2) + 1=0

Показать ответ
Ответ:
MashaTears1
MashaTears1
06.10.2020 10:43
Рассмотрите такой вариант:
1. Сначала избавиться от сложного аргумента у синуса по формуле приведения:
cosx-√2*cos(x/2)+1=0
2. Расписать cosx как двойной аргумент и 1 как тригонометрическую единицу, причём аргумент взять как (х/2):
cos^2(\frac{x}{2})-sin^2( \frac{x}{2})-\sqrt{2}cos( \frac{x}{2})+sin^2(\frac{x}{2}) +cos^2(\frac{x}{2})=0
3. После сокращений получится уравнение:
2cos^2( \frac{x}{2})- \sqrt{2} cos( \frac{x}{2})=0
\sqrt{2} cos( \frac{x}{2})*(\sqrt{2} cos( \frac{x}{2})-1)=0
Полученное уравнение разобьётся на два простых:
\left[\begin{array}{ccc}cos( \frac{x}{2})=0\\cos( \frac{x}{2})= \frac{1}{ \sqrt{2} } \\\end{array}
Откуда х будет:
\left[\begin{array}{ccc}x=pi+2pi*n\\x=+- \frac{pi}{2}+4pi*n, n∈Z \\\end{array}\right]
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота