Допустим, автобус выходит из А в 6 утра и приходит в В в 10. Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13. Придя в 10 утра в В, он разворачивается и едет обратно. В А он возвращается в 14. Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги. А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус, который в 10 вышел из В. Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги. А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги. И ровно в 11 он проедет 3/4 дороги и встретит первый автобус. И дальше все точно также. Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией
Следующий выходит в 7, потом в 8, в 9, в 10, в 11, в 12, в 13.
Придя в 10 утра в В, он разворачивается и едет обратно.
В А он возвращается в 14.
Автобус, который вышел из А в 7, к 10 часам проедет 3/4 дороги.
А в 10:30 он проедет 3/4 + 1/8 = 7/8 и встретит первый автобус,
который в 10 вышел из В.
Автобус, который вышел в 8, к 10 часам проедет 1/2 дороги.
А в 10:30 он проедет 1/2 + 1/8 = 5/8 дороги.
И ровно в 11 он проедет 3/4 дороги и встретит первый автобус.
И дальше все точно также.
Таким образом, если я увидел встречный автобус, то следующий я увижу через полчаса.
Объяснение:
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией