Как я понял, b-6,5 - это основание логарифмов? 1) Область определения логарифма: Основание логарифма > 0 и не равно 1 b - 6,5 > 0; b > 6,5 b - 6,5 =/= 1; b =/= 7,5 Число под логарифмом > 0: x^2 + 1 > 0 - это верно при любом х (b-5)*x > 0. Так как уже известно, что b > 5, то x > 0
2) Решаем уравнение. Основания логарифмов одинаковые, убираем их x^2 + 1 = (b-5)*x x^2 - (b-5)*x + 1 = 0 Так как уравнение должно иметь 2 различных корня, то D > 0 D = (b-5)^2 - 4*1*1 = b^2 - 10b + 25 - 4 = b^2 - 10b + 21 > 0 (b - 3)(b - 7) > 0 b < 3 U b > 7 Но из обл. опр. мы знаем, что b > 6,5 b =/= 7,5 b принадлежит (7; 7,5) U (7,5; +oo)
3) Найдем x x^2 - (b-5)*x + 1 = 0 x1 = (b - 5 - √(b^2 - 10b + 21) ) / 2 x2 = (b - 5 + √(b^2 - 10b + 21) ) / 2 Из обл. опр. мы выяснили, что х должен быть > 0. Ясно, что x2 > x1, поэтому достаточно проверить (b - 5 - √(b^2 - 10b + 21) ) / 2 > 0 b - 5 - √(b^2 - 10b + 21) > 0 √(b^2 - 10b + 21) < b - 5 b^2 - 10b + 21 < b^2 - 10b + 25 Это верно при любом b, но проверить было необходимо. ответ: b принадлежит (7; 7,5) U (7,5; +oo)
x0 = -1 Промежуток [-3, 0]
а) написать уравнение касательной
б) промежутки монотонности и экстремумы
в) наибольшее и наименьшее значение функции на указанном промежутке.
решаем.
Производная = х² - 2х - 3
х² - 2х - 3 = 0 ( ищем точки экстремумов)
По т. Виета х1 = 3 и х2 = -1
-∞ + -1 - 3 + +∞ Это знаки производной
Возрастает убывает возрастает
х = -1 - это точка максимума
х = 3 - это точка минимума
В промежуток [-3, 0] попадает только точка х = -1
Считаем:
х = -1
f(-1) = 1/3·(-1)³ -(-1)² - 3·(-1) + 9 = -1/3 -1 +3 +9 = 10 2/3 ( наибольшее значение)
х = -3
f(-3) = 1/3·(-3)³ -(-3)² -3·(-3) + 9 = -9 -9 +9 +9 = 0 (наименьшее значение)
х = 0
f(0) = 9
1) Область определения логарифма:
Основание логарифма > 0 и не равно 1
b - 6,5 > 0; b > 6,5
b - 6,5 =/= 1; b =/= 7,5
Число под логарифмом > 0:
x^2 + 1 > 0 - это верно при любом х
(b-5)*x > 0. Так как уже известно, что b > 5, то x > 0
2) Решаем уравнение. Основания логарифмов одинаковые, убираем их
x^2 + 1 = (b-5)*x
x^2 - (b-5)*x + 1 = 0
Так как уравнение должно иметь 2 различных корня, то D > 0
D = (b-5)^2 - 4*1*1 = b^2 - 10b + 25 - 4 = b^2 - 10b + 21 > 0
(b - 3)(b - 7) > 0
b < 3 U b > 7
Но из обл. опр. мы знаем, что
b > 6,5
b =/= 7,5
b принадлежит (7; 7,5) U (7,5; +oo)
3) Найдем x
x^2 - (b-5)*x + 1 = 0
x1 = (b - 5 - √(b^2 - 10b + 21) ) / 2
x2 = (b - 5 + √(b^2 - 10b + 21) ) / 2
Из обл. опр. мы выяснили, что х должен быть > 0.
Ясно, что x2 > x1, поэтому достаточно проверить
(b - 5 - √(b^2 - 10b + 21) ) / 2 > 0
b - 5 - √(b^2 - 10b + 21) > 0
√(b^2 - 10b + 21) < b - 5
b^2 - 10b + 21 < b^2 - 10b + 25
Это верно при любом b, но проверить было необходимо.
ответ: b принадлежит (7; 7,5) U (7,5; +oo)