1) радиус в точку касания перпендикулярен к касательной)) 2) дуга (отрезанная хордой) связана с центральным углом, опирающимся на эту дугу ---центральный угол определяет градусную меру дуги))) 3) если провести высоту в получившемся равнобедренном треугольнике, то легко вычислить искомый угол... 90°-48°=42°, 90°-42°=48° все это известно как Теорема: Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине градусной меры дуги, заключенной между его сторонами.
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0 2)(2x - y)² = 0
1. -(x + 2)² =0 (x + 2)(x + 2) = 0 откуда видно, что x = -2 2. (2x - y)² = 0 Подставляем наш x и получаем (-4 - y)² = 0 (-4 - y)(-4 - y) = 0 А значит y = -4
2) дуга (отрезанная хордой) связана с центральным углом, опирающимся на эту дугу ---центральный угол определяет градусную меру дуги)))
3) если провести высоту в получившемся равнобедренном треугольнике,
то легко вычислить искомый угол... 90°-48°=42°, 90°-42°=48°
все это известно как Теорема: Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине градусной меры дуги, заключенной между его сторонами.
(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4