- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
1 задание
f(x)=x²+ 1
g(x)=x² − 1
Сравнить f(-10) и g(2)
Решение
1) f(-10)= (-10)²+ 1
f(-10)=100+ 1
f(-10)=101
2) g(2)= 2² − 1
g(x)=4 − 1
g(x)= 3
3) 101 > 3
значит f(-10)> g(2)
ответ: f(-10) > g(2)
2 задание
S(a)=a²
a — аргумент
S(a) — функция
1) a=1; S(a) = 1² = 1
2) a=2; S(a) = 2² = 4
3) a=3; S(a) = 3² = 9
4) a=4; S(a) = 4² = 16
5) a=5; S(a) = 5² = 25
Таблица
Сторона a, см ║ 1 ║ 2 ║ 3 ║ 4 ║ 5 ║
Площадь S(a), см² ║ 1 ║ 4 ║ 9 ║ 16 ║25 ║
3 задание
y = −a+3.
При каких значениях a значение функции равно −8?
Решение.
1) Значение функции - это у.
Значит, у= -8
2) Подставим вместо у число 8 и найдем а.
y = −a+3
-8 = −a+3
а = 8+3
а = 11
ответ: при а = 11