Строим прямую у=х-1 Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет Проверим, какой из них принадлежит (0;0) 0-0≤1 - верно. Значит условию удовлетворяет та часть, которой принадлежит точка (0;0) См. рис. 1
2у²=1 у²=1/2 у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы. Проверяем точку (0;0) 1-2·0<0 - неверно. Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0). См. рис.2
Системе x-y<=1; 1-2y²<0 удовлетворяет пересечение двух областей ( см. рис. 3)
5^(x-2) = 5^0 2^(x² -3x +8) = 2^6
x-2 = 0 x² -3x +8 = 6
x = 2 x² -3x +2 = 0
2) 3·4^x =48 x = 1 и х = 2
4^x = 16 6)7^(2x-8)·7^(x+7) = 0
4^x = 4² нет решений
x=2 7)(0,2)^x ≤ 25·5√5
3)3^x=27·3√9 5^-x ≤ 5²·5·5^1/2
3^x = 3³·3·3 5^-x ≤5^3,5
3^x = 3^5 -x ≤ 3,5
x = 5 x ≥ -3,5
4)3^x + 3^(x +1) = 4 8)(1/2)^-x + 2^(3 +x) ≤9
3^x(1 +3) = 4 2^x +2^(3 +x) ≤ 9
3^x·4 = 4 2^x(1 +2^3) ≤ 9 | :9
3^x = 1 2^x ≤ 1
x = 0 2^x ≤2^0
x≤ 0
Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет
Проверим, какой из них принадлежит (0;0)
0-0≤1 - верно.
Значит условию удовлетворяет та часть, которой принадлежит точка (0;0)
См. рис. 1
2у²=1
у²=1/2
у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы.
Проверяем точку (0;0)
1-2·0<0 - неверно.
Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0).
См. рис.2
Системе
x-y<=1;
1-2y²<0
удовлетворяет пересечение двух областей ( см. рис. 3)