Найдём стационарные точки (точки, в которых производная равна нулю)
х^2 - 5x + 6 = 0
D = 25 - 4 * 6 = 1
х1 = (5 - 1)/ 2 = 2, х2 = (5 + 1)/ 2 = 3,
Поскольку производная представляет собой квадратичную функцию с положительным коэффициентом при x^2, то в интервалах (-беск; 2] и [3; +беск) производная положительна, а функция возрастает. В интервале [2; 3] производная отрицательна, а функция убывает.
Получается, что на интервале [0;1] который входит в интервал (-беск; 2], функция возрастает и наименьшее значение её будет на левом конце интервала, в точке х = 0 Унаим = 10.
Наибольшее значение функции будет на правом конце интервала при х = 1
2) ( 3x + 3y) - bx - by = 3(x + y) - b(x + y) = (x+y)(3 - b)
3) (4n - 4) + ( c - nc) = 4( n - 1) + c( 1 - n) = (4 - c)(n - 1)
4) ( x⁷ + x³) - 4x⁴ - 4 = x³(x⁴ + 1) - 4( x⁴ + 1) = (x⁴+1)( x³ - 4)
5) (6mn - 3m) + ( 2n - 1) = 3m( 2n - 1) + ( 2n - 1)=(2n - 1)(3m + 1)
6) (4a⁴ - 8a) +(10y - 5ya³) = 4a(a³ - 2) + 5y(2 - a³) = (4a - 5y)(a³ - 2)
7) a²b² - a + ab² - 1 = (a²b² + ab²) - (a + 1) = ab²(a + 1) - (a+1)=(a+1)(ab² - 1)
8) (xa - xb²) + (zb² - za) - ya + yb² = x(a-b²)+z(b² -a) - y(a -b²)=(x - z - y)(a - b²)
y=(x^3)/3-(5/2)x^2+6х+1
Найдём производную y' = 1/3(3х^2) - 5/2 * 2x + 6 = х^2 - 5x + 6
Найдём стационарные точки (точки, в которых производная равна нулю)
х^2 - 5x + 6 = 0
D = 25 - 4 * 6 = 1
х1 = (5 - 1)/ 2 = 2, х2 = (5 + 1)/ 2 = 3,
Поскольку производная представляет собой квадратичную функцию с положительным коэффициентом при x^2, то в интервалах (-беск; 2] и [3; +беск) производная положительна, а функция возрастает. В интервале [2; 3] производная отрицательна, а функция убывает.
Получается, что на интервале [0;1] который входит в интервал (-беск; 2], функция возрастает и наименьшее значение её будет на левом конце интервала, в точке х = 0 Унаим = 10.
Наибольшее значение функции будет на правом конце интервала при х = 1
Унаиб = 1/3 - 5/2 +6 +10 = 13+ 1/6
Словами: тринадцать целых одна шестая.