В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Katya1065
Katya1065
21.02.2021 17:25 •  Алгебра

D²y/dx² = -1/x·dy/dx; y=2 и dy/dx=1 при x=0 дифференциальное уравнение подскажите как решать,

Показать ответ
Ответ:
муратдавлетов
муратдавлетов
06.10.2020 12:34
y''=-\frac{y'}{x};\ xy''+y'=0;\ (xy')'=0;\ xy'=C_1; y'=\frac{C_1}{x};

y=C_1\int\frac{dx}{x}; y=C_1\ln |x|+C_2 - общее решение.
Найти частное решение из этого общего, конечно, нельзя, так как логарифм нуля не существует.

Более того, x=0 даже в уравнение подставить нельзя, так как там он в знаменателе. Если считать, что наше уравнение xy''+y=0, то при подстановке x=0 получаем  y=0, а не 2. В общем, с частным решением проблема - нет частного решения, удовлетворяющего этим начальным условиям

 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота