28 или 35
Объяснение:
Соединим линиями мальчиков и девочек, которые дружат друг с другом.
Количество линий выходящих от мальчиков равно 2м, от девочек 5д
Так как это одни и те же линии, то 2м=5д.
Минимальное количество учеников 25, максимальное 2*19=38
Количество девочек связано с количеством мальчиков соотношением д=2/5м
Тогда количество учеников а классе равно (м+д)=2/5м+м=7/5м
25<=7/5м<=38
25*5/7<=м<=38*5/7
18<=м<=27
Из равенства 2м=5д, следует, что количество мальчиков делится на 5
Значит м может принимать значения 20 и 25, в этом случае количество девочек 8 и 10. Тогда возможное количество учеников в классе 28 и 35.
Ранжированный ряд: 157, 160, 160, 161, 162, 162, 165, 165, 165, 165, 165, 168, 169, 170, 170, 170, 171, 173, 173, 174, 175, 177, 177, 182, 182, 186.
Средний рост: (157 + 160 + 160 ++ 186) : 26 ≈ 169
Мода ряда: 165
Медиана ряда: (170 + 175) : 2 = 172,5
Задание 2.
Среднее арифметическое: (100 000 + 4 * 20 000 + 20 * 10 000) : 25 = 15200
Мода ряда: 10 000
Медиана ряда: (10 000 + 10 000) : 2 = 10 000
В рекламных целях выгоднее всего использовать среднее арифметическое ряда.
Задание 3.
Сумма чисел старого ряда равна 7 * 10 = 70.
Новый ряд состоит из 10 + 2 = 12 чисел.
Среднее арифметическое нового ряда: (70 + 17 + 18) : 12 = 8,75
28 или 35
Объяснение:
Соединим линиями мальчиков и девочек, которые дружат друг с другом.
Количество линий выходящих от мальчиков равно 2м, от девочек 5д
Так как это одни и те же линии, то 2м=5д.
Минимальное количество учеников 25, максимальное 2*19=38
Количество девочек связано с количеством мальчиков соотношением д=2/5м
Тогда количество учеников а классе равно (м+д)=2/5м+м=7/5м
25<=7/5м<=38
25*5/7<=м<=38*5/7
18<=м<=27
Из равенства 2м=5д, следует, что количество мальчиков делится на 5
Значит м может принимать значения 20 и 25, в этом случае количество девочек 8 и 10. Тогда возможное количество учеников в классе 28 и 35.