Дробь может быть больше нулятолько тогда когда1. И числитель и знаменатель меньше нуля.2. И числитель и знаменатель больше нуля. Так как знаменатель в данном случае число 4 (положительное),то для того чтобы дробь была положительна, надо чтобы и числитель был больше нуля. Значит, ищем такие Х при которых-х-4>0прибавим к обеим частям неравенства 4.В народе говорят "перенесем 4 с противоположным знаком через знак неравенства"-х>4Теперь умножим обе части неравнества на "-1".
Как известно, знак неравенства при этом действии следует
сменить на противоположный.
Получаем, x<-4
при х<-4 функция принимает положительные значения.
Приведем к общему знаменателю
(-х-8)/4 + 4/4 >0
(-х-8+4)/4>0
(-х-4)/4>0
Дробь может быть больше нулятолько тогда когда1. И числитель и знаменатель меньше нуля.2. И числитель и знаменатель больше нуля.
Так как знаменатель в данном случае число 4 (положительное),то для того чтобы дробь была положительна, надо чтобы и числитель был больше нуля. Значит, ищем такие Х при которых-х-4>0прибавим к обеим частям неравенства 4.В народе говорят "перенесем 4 с противоположным знаком через знак неравенства"-х>4Теперь умножим обе части неравнества на "-1".
Как известно, знак неравенства при этом действии следует
сменить на противоположный.
Получаем,
x<-4
при х<-4 функция принимает положительные значения.
- 2sin²x - √3*2sinx *cosx=0;
-2sinx(sinx -√3cosx) = 0 ;
[ sinx = 0 ; sinx -√3cosx =0 ;
a) sinx = 0 ⇒ x = π*k , k∈Z ;.
b) sinx -√3cosx =0 ⇔tqx =√3 ⇒x =π/3 + π*k , k∈Z.
ответ : π*k ; π/3 + π*k , k∈Z.
2sin²x = 1 +cosx ;
- (1 -2sin²x) = cosx ;
- cos2x = cosx ;
cos2x +cosx =0 ;
* * * * * cosα +cosβ =2cos(α+β)/2* cos(α - β)/2 * * * * *
2cos3x/2*cosx/2 =0 ;
cos3x/2 = 0 ⇒3x/2 =π/2+π*k , k∈Z⇔x = π/3+2π/3*k , k∈Z ;
cosx/2 =0⇒x/2 =π/2+π*k , k∈Z⇔x = π+2π*k ,k∈Z.
ответ : π/3+2π/3*k ; π+2π*k , k∈Z.