Дан кусок ткани в виде креста. Как из него вырезать крест поменьше, а из оставшихся лоскутков (их оказалось всего 4 не разрезая их, сшить еще один крест, притом ровно такого же размера, что и первый маленький крест?
б. Находим дискриминант (дискриминант должен получиться больше 0 (2 корня уравнения), или равным 0 (1 корень уравнения), если дискриминант меньше 0, то уравнение не имеет корней, и дальше его нет смысла решать);
в. Находим корни уравнения, при условии того, что написано в предыдущем пункте.
Объяснение:
а) 25²⁶-25²⁴=25²⁴(25²-25⁰)=25²⁴(625-1)=25²⁴·624
Признаки делимости на 12:
1) 6+2+4=12 делится на 3, следовательно, 624 также делится на 3;
2) 2+4÷2=4 - чётное число. Значит, 624 делится на 4.
Отсюда следует, что 624 делится на 12.
Если один из множителей делится нацело на число а, то произведение делится нацело на число a.
Следовательно, произведение (25²⁴·624) делится на 12.
б) 16⁴+8⁵-4⁷=(2⁴)⁴+(2³)⁵-(2²)⁷=2¹⁶+2¹⁵-2¹⁴=2¹⁴(2²+2¹-2⁰)=2¹⁴(4+2-1)=2¹⁴·5=2¹³·2·5=2¹³·10
Если один из множителей делится нацело на число а, то произведение делится нацело на число a.
Следовательно, произведение (2¹³·10) делится на 10.
Смотри решение.
Объяснение:
решения (через дискриминант):
Порядок решения:
а. Записываем уравнение в исходном виде;
б. Находим дискриминант (дискриминант должен получиться больше 0 (2 корня уравнения), или равным 0 (1 корень уравнения), если дискриминант меньше 0, то уравнение не имеет корней, и дальше его нет смысла решать);
в. Находим корни уравнения, при условии того, что написано в предыдущем пункте.
решения (через теорему Виетта):
Сумма 2 корней уравнения равняется коэффициенту b, взятому с противоположным знаком.
Произведение 2 корней уравнения равняется свободному коэффициенту в данном уравнении.
Общая формула квадратного уравнения: (для справок).
Теперь переходим к решению данного квадратного уравнения: