Дан равнобедренный треугольник авс, в котором ab = bc, угол b = 30° (рисунок 77). найдите угол между векторами: а) ab и ac , б) ав и вс ; в) ac и bа. ! ( это если что)
Пусть х - числитель первоначальной дроби, тогда по условию её знаменатель равен (х + 4), сама дробь имеет вид х/(х+4).
После увеличения на 6 числителя он станет равным (х + 6), а уменьшенный на 3 знаменатель будет иметь вид (х + 4 - 3) = (х + 1). Новая дробь равна (х+6)/(х+1).
Зная, что первоначальная дробь и полученная являются взаимно обратными, составим и решим уравнение:
х/(х+4) = (х+1)/(х+6)
Воспользуемся основным свойством пропорции:
х•(х + 6) = (х + 4)(х + 1)
х^2 + 6х = х^2 + 5х + 4
6х - 5х = 4
х = 4
4 - числитель первоначальной дроби,
4+4= 8 - знаменатель первоначальной дроби
4/8 - данная дробь.
ответ: 4/8.
Проверим полученный результат:
Данная дробь - 4/8 = 1/2.
Новая дробь - (4+6)/(8-3) = 10/5 = 2.
1/2 и 2 - взаимно обратные дроби, их произведение 1/2 • 2 = 1, верно.
4/8.
Объяснение:
Пусть х - числитель первоначальной дроби, тогда по условию её знаменатель равен (х + 4), сама дробь имеет вид х/(х+4).
После увеличения на 6 числителя он станет равным (х + 6), а уменьшенный на 3 знаменатель будет иметь вид (х + 4 - 3) = (х + 1). Новая дробь равна (х+6)/(х+1).
Зная, что первоначальная дробь и полученная являются взаимно обратными, составим и решим уравнение:
х/(х+4) = (х+1)/(х+6)
Воспользуемся основным свойством пропорции:
х•(х + 6) = (х + 4)(х + 1)
х^2 + 6х = х^2 + 5х + 4
6х - 5х = 4
х = 4
4 - числитель первоначальной дроби,
4+4= 8 - знаменатель первоначальной дроби
4/8 - данная дробь.
ответ: 4/8.
Проверим полученный результат:
Данная дробь - 4/8 = 1/2.
Новая дробь - (4+6)/(8-3) = 10/5 = 2.
1/2 и 2 - взаимно обратные дроби, их произведение 1/2 • 2 = 1, верно.
1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.