В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
марат172
марат172
31.12.2022 22:52 •  Алгебра

Дана арифметическая прогрессия (an), если d = –5, an = –8, Sn = 145. Найди n. ​

Показать ответ
Ответ:
Mabmbj
Mabmbj
16.01.2024 19:50
Хорошо, давайте поэтапно решим эту задачу.

Шаг 1: Понимание задачи
Дана арифметическая прогрессия, где an — n-ый член прогрессии, d — разность, Sn — сумма первых n членов прогрессии. Нам даны значения d, an и Sn, и мы должны найти значение n.

Шаг 2: Запись данных
Давайте запишем данные, которые нам даны:

d = -5 (разность)
an = -8 (значение n-го члена)
Sn = 145 (сумма первых n членов)

Шаг 3: Формула суммы членов арифметической прогрессии
Формула для вычисления суммы первых n членов арифметической прогрессии выглядит следующим образом:

Sn = (n/2)(a1 + an)

Где a1 - первый член прогрессии.

Шаг 4: Замена данных в формулу суммы членов
Подставим данные в формулу:

145 = (n/2)(a1 + (-8))

Шаг 5: Определение первого члена прогрессии
Чтобы решить уравнение, нам необходимо найти a1, первый член прогрессии. Мы знаем, что разность (d) равна -5, поэтому a1 можно найти, вычтя -5 из an:

a1 = an - (n-1)d

Подставим значения в формулу:

a1 = -8 - (n-1)(-5)
a1 = -8 + 5n - 5
a1 = 5n - 13

Шаг 6: Замена первого члена в формулу суммы членов
Теперь у нас есть новая формула с учетом первого члена:

145 = (n/2)(5n - 13 + (-8))
145 = (n/2)(5n - 21)

Шаг 7: Упрощение уравнения
Мы можем упростить это уравнение, раскрыв скобки:

145 = (5n^2 - 21n) / 2

Теперь умножим обе части уравнения на 2, чтобы избавиться от дроби:

290 = 5n^2 - 21n

Шаг 8: Приведение уравнения к квадратному виду
Для решения этого уравнения мы должны привести его к квадратному виду. Для этого поместим все члены уравнения в порядке убывания степени:

5n^2 - 21n - 290 = 0

Шаг 9: Решение квадратного уравнения
Мы можем решить это квадратное уравнение, используя факторизацию, квадратное уравнение или другие методы. В данном случае проще всего воспользоваться квадратным уравнением:

n = (-b ± √(b^2 - 4ac)) / (2a)

Где a = 5, b = -21 и c = -290.

Подставим значения в формулу и решим уравнение:

n = (-(-21) ± √((-21)^2 - 4*5*(-290))) / (2*5)
n = (21 ± √(441 + 5800)) / 10
n = (21 ± √(6241)) / 10
n = (21 ± 79) / 10

Таким образом, имеем два возможных значения для n: n1 = (21 + 79) / 10 = 10, и n2 = (21 - 79) / 10 = -5. Поскольку количество членов не может быть отрицательным, мы отбрасываем значение n2.

Итак, после решения уравнения получаем, что n = 10.

Таким образом, ответ на задачу составляет n = 10.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота