Дана арифметическая прогрессия (an). Задана формула n-го члена этой прогрессии и её первый член: an+1=an+9, a1=6. Найди восьмой член данной прогрессии.
Применим метод вс угла: y=sqrt(2)*(sqrt(2)/2 *cos(x)+sqrt(2)/2 *sin(x))= sqrt(2)*(sin(pi/4)*cosx +cos(pi/4)*sin(x) y=sqrt(2)*sin(x+pi/4) точки минимума и максимума функции находятся там где sin(x+pi/4)=1 и sin(x+pi/4)=-1 1)sin(x+pi/4)=1 x+pi/4=pi/2+2pi*n n-целое число x=pi/4+2pi*n найдем все значения на промежутке от 0 до 2pi 0<=pi/4+2pi*n<2pi тут очевидно что целое решение единственно n=0 x=pi/4 2)sin(x+pi/4)=-1 x+pi/4=-pi/2+2pi*n x=-3pi/4+2pi*n тут очевидно что подойдут n=1 и n=2 тогда всего 3 критические точки ответ:3
у = -2х² + (10/3)х + 8.
Для определения точек пересечения графиков функции: y=x/3 - 1 и y=-2(x-3) * ( x +1( 1/3) надо их приравнять - общие точки принадлежат обоим графикам:
-2х² + (10/3)х + 8 = (1/3)х - ,
-2х² + (9/3)х + 9 = 0,
-2х² + 3х + 9 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=3^2-4*(-2)*9=9-4*(-2)*9=9-(-4*2)*9=9-(-8)*9=9-(-8*9)=9-(-72)=9+72=81;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√t81-3)/(2*(-2))=(9-3)/(2*(-2))=6/(2*(-2))=6/(-2*2)=6/(-4)=-6/4=-1.5;
x_2=(-√81-3)/(2*(-2))=(-9-3)/(2*(-2))=-12/(2*(-2))=-12/(-2*2)=-12/(-4)=-(-12/4)=-(-3)=3.
ответ: х_1 = -1,5, у = (1/3)*(-3/2) - 1 = -1,5,
х_2 = 3, у = (1/3)*3 - 1 = 0.
y=sqrt(2)*(sqrt(2)/2 *cos(x)+sqrt(2)/2 *sin(x))=
sqrt(2)*(sin(pi/4)*cosx +cos(pi/4)*sin(x)
y=sqrt(2)*sin(x+pi/4) точки минимума и максимума функции находятся там где sin(x+pi/4)=1 и sin(x+pi/4)=-1
1)sin(x+pi/4)=1 x+pi/4=pi/2+2pi*n n-целое число
x=pi/4+2pi*n найдем все значения на промежутке от 0 до 2pi 0<=pi/4+2pi*n<2pi тут очевидно что целое решение единственно n=0
x=pi/4 2)sin(x+pi/4)=-1 x+pi/4=-pi/2+2pi*n x=-3pi/4+2pi*n тут очевидно что подойдут n=1 и n=2
тогда всего 3 критические точки
ответ:3