Дано:
АВСЕ — параллелограмм,
S АВСЕ = 45 сантиметров квадратных,
Р АВСЕ = 40 сантиметров,
ВН — высота,
АЕ = 5 * ВН .
Найти длины сторон параллелограмма АВСЕ: АВ, СЕ, ВС, АЕ и высоту ВН — ?
1. Рассмотрим параллелограмм АВСЕ.
S АВСЕ = ВН * АЕ;
45 = ВН * 5 * ВН;
45 = 5 * ВН^2;
ВН^2 = 45 : 5;
ВН^2 = 9;
ВН = 3.
2. АЕ = 5 * 3 = 15.
3. Противолежащие стороны равны между собой в параллелограмме, тогда ВС = АЕ = 15 , АВ = СЕ.
Р авсе = АВ + СЕ + ВС + АЕ;
40 = АВ + АВ + 15 + 15;
40 = 2 * АВ + 30;
2 * АВ = 40 - 30;
2 * АВ = 10;
АВ = 10 : 2;
АВ = 5.
ответ: ВН = 3, ВС = АЕ = 15 , АВ = СЕ = 5.
Объяснение:
добавте в лучший ответ
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Дано:
АВСЕ — параллелограмм,
S АВСЕ = 45 сантиметров квадратных,
Р АВСЕ = 40 сантиметров,
ВН — высота,
АЕ = 5 * ВН .
Найти длины сторон параллелограмма АВСЕ: АВ, СЕ, ВС, АЕ и высоту ВН — ?
1. Рассмотрим параллелограмм АВСЕ.
S АВСЕ = ВН * АЕ;
45 = ВН * 5 * ВН;
45 = 5 * ВН^2;
ВН^2 = 45 : 5;
ВН^2 = 9;
ВН = 3.
2. АЕ = 5 * 3 = 15.
3. Противолежащие стороны равны между собой в параллелограмме, тогда ВС = АЕ = 15 , АВ = СЕ.
Р авсе = АВ + СЕ + ВС + АЕ;
40 = АВ + АВ + 15 + 15;
40 = 2 * АВ + 30;
2 * АВ = 40 - 30;
2 * АВ = 10;
АВ = 10 : 2;
АВ = 5.
ответ: ВН = 3, ВС = АЕ = 15 , АВ = СЕ = 5.
Объяснение:
добавте в лучший ответ
Система линейных уравнений с двумя неизвестными
x + y = 5
2x - 3y = 1
Система линейных ур-ний с тремя неизвестными
2*x = 2
5*y = 10
x + y + z = 3
Система дробно-рациональных уравнений
x + y = 3
1/x + 1/y = 2/5
Система четырёх уравнений
x1 + 2x2 + 3x3 - 2x4 = 1
2x1 - x2 - 2x3 - 3x4 = 2
3x1 + 2x2 - x3 + 2x4 = -5
2x1 - 3x2 + 2x3 + x4 = 11
Система линейных уравнений с четырьмя неизвестными
2x + 4y + 6z + 8v = 100
3x + 5y + 7z + 9v = 116
3x - 5y + 7z - 9v = -40
-2x + 4y - 6z + 8v = 36
Система трёх нелинейных ур-ний, содержащая квадрат и дробь
2/x = 11
x - 3*z^2 = 0
2/7*x + y - z = -3
Система двух ур-ний, содержащая куб (3-ю степень)
x = y^3
x*y = -5
Система ур-ний c квадратным корнем
x + y - sqrt(x*y) = 5
2*x*y = 3
Система тригонометрических ур-ний
x + y = 5*pi/2
sin(x) + cos(2y) = -1
Система показательных и логарифмических уравнений
y - log(x)/log(3) = 1
x^y = 3^12
Объяснение: