Например, выражение 2x + 4xy2 + x + 2xy2 является многочленом. Проще говоря, многочлен это несколько одночленов, соединенных знаком «плюс».
В некоторых многочленах одночлены могут соединяться знаком «минус». Например, 3x − 5y − 2x. Следует иметь ввиду, что это по-прежнему сумма одночленов. Многочлен 3x − 5y − 2x это сумма одночленов 3x, −5y и − 2x, то есть 3x + (−5y) + (−2x). После раскрытия скобок образуется многочлен 3x − 5y − 2x.
Многочлен — это сумма одночленов.
Например, выражение 2x + 4xy2 + x + 2xy2 является многочленом. Проще говоря, многочлен это несколько одночленов, соединенных знаком «плюс».
В некоторых многочленах одночлены могут соединяться знаком «минус». Например, 3x − 5y − 2x. Следует иметь ввиду, что это по-прежнему сумма одночленов. Многочлен 3x − 5y − 2x это сумма одночленов 3x, −5y и − 2x, то есть 3x + (−5y) + (−2x). После раскрытия скобок образуется многочлен 3x − 5y − 2x.
3x + (−5y) + (−2x) = 3x − 5y − 2x
а)2sin²x-3sinx-2=0
Замена sinx=t
2t²-3t-2=0
D=3²+4×2×2=25
t₁= 3+√D÷4=3+5÷ 4=8÷4=2
t₂=3-√D÷4=3-5÷4=-2÷4=-0,5
Возвращаемся к замене
sinx=2 sinx=-0,5
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
4cos²x+4sinx-1=0
cos²x=1-sin²x
4( 1-sin²x)+4sinx-1=0
4-4sin²x+4sinx-1=0
-4sin²x+4sinx-1+4=0
-4 sin²x+4sinx+3=0 ÷(-1)
4sin²x-4sinx-3=0
Замена sinx=t
4t²-4t-3=0
D=4²+4×4×3=16+48=64
t₁=4+√D÷8= 4+8÷8=12÷8=1,5
t₂=4-√D÷8=4-8÷8= -4÷8=-0,5
Возвращаемся к замене
sinx=1,5 sinx=-1\2
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z