f(x)=|x-1|-|x+1|+x Обзозначим график функции, как ломаную линию с отрезками [CA]-[AB]-[BD] (cм. чертеж во вложении), где [AB] пересекает точку начала координат О: [AO]=(OB], [CA] II [BD], т.к. A(-1;1) B(-3;-1) C(-3;-1) D(3;1) Вычислим k прямой y=kx, проходящей через точки А и В: А(-1;1) => 1=k*(-1) => k=-1 Вложение: таблицы и графики B(1;-1) => -1=k*1 => k=-1 Прямая а, проходящая через точки А,О,В имеет вид у=-х Прямая b, параллельная [AC] и [BD] и перпендикулярная прямой а, имеет вид у=х (k=1). В уравнении у=kx которая имеет с графиком данной функции только одну общую точку, k≠-1; k≠0; k≤1 k∈(-1;0)∪(0;1]
Обзозначим график функции, как ломаную линию с отрезками
[CA]-[AB]-[BD] (cм. чертеж во вложении), где [AB] пересекает точку начала координат О: [AO]=(OB],
[CA] II [BD], т.к. A(-1;1) B(-3;-1)
C(-3;-1) D(3;1)
Вычислим k прямой y=kx, проходящей через точки А и В:
А(-1;1) => 1=k*(-1) => k=-1
Вложение: таблицы и графики
B(1;-1) => -1=k*1 => k=-1
Прямая а, проходящая через точки А,О,В имеет вид у=-х
Прямая b, параллельная [AC] и [BD] и перпендикулярная прямой а,
имеет вид у=х (k=1).
В уравнении у=kx которая имеет с графиком данной функции только одну общую точку, k≠-1; k≠0; k≤1
k∈(-1;0)∪(0;1]
Q1+Q2+Q3=0. ( Q1-количество теплоты, полученное сосудом)
Q1=c1*m1*(t2 - t1). ( c1-удельная теплоемкость алюминия=890Дж/кг*град, m1-его масса=0,045кг, t1-начальная температура =20, t2-конечная температура=30) .
Q2-количество теплоты, полученное водой.
Q2=c2*m2*(t2 - t1) (c2-удельная теплоемкость =4200Дж/кг*град, m2 - масса воды=0,15кг) .
Q3-количество теплоты, отданное нагретым телом.
Q3=c3*m3*(t2 - t3). ( c3-удельная теплоемкость вещества, m3-его масса=0,2кг, t3-его начальная температура =95) .
c1*m1*(t2 - t1) + c2*m2*(t2 - t1) + c3*m3*(t2 - t3)=0.
c3*m3*(t2 - t3)= - c1*m1*(t2 - t1) - c2*m2*(t2 - t1).
с3= - (с1*m1*(t2 - t1) + c2*m2*(t2 - t1)) / m3*(t2 - t3).
c3= - (890*0,045*(30 - 20) + 4200*0,15*(30 - 20)) / 0,2*(30 - 95)=515,4Дж /кг*град
ответ 515,4Дж /кг*град