В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Fennekin1
Fennekin1
05.05.2020 06:10 •  Алгебра

Дана функция f(x)=x^3+6x^2+7x-2 напишите уравнение касательной к графику функции y=f(x) параллельной прямой y=-2x+7​

Показать ответ
Ответ:
galin56owukth
galin56owukth
10.10.2020 11:51

Производная данной функции f'(x)=3x^2+12x+7

Пусть x_0 - абсцисса точки касания прямой к кривой.

Известно, что неизвестная прямая(касательная) параллельна прямой y = -2x + 7, следовательно, у них угловые коэффициенты равны: k = -2.

По геометрическому смыслу производной, мы имеем:

f'(x_0)=k\\ \\ 3x_0^2+12x_0+7=-2\\ \\ 3x_0^2+12x_0+9=0~~|:3\\ \\ x_0^2+4x_0+3=0

По теореме Виета получаем x_0=-3 и x_0=-1

Т.е. имеет две касательные к данной кривой. Найдем их.

Общий вид уравнения касательной: y=f'(x_0)(x-x_0)+f(x_0)

Подсчитаем значение функции и значение производной функции в точке x_0=-3

f(-3)=(-3)^3+6\cdot(-3)^2+7\cdot (-3)-2=4\\f'(-3)=3\cdot (-3)^2+12\cdot (-3)+7=-2

Уравнение касательной: y=-2(x+3)+4=\boxed{-2x-2}

Аналогично, подсчитаем значение функции и значение производной функции в точке x_0=-1

f(-1)=(-1)^3+6\cdot(-1)^2+7\cdot(-1)-2=-4

f'(-1)=3\cdot (-1)^2+12\cdot(-1)+7=-2

Уравнение касательной: y=-2(x+1)-4=\boxed{-2x-6}

P.S. Можно было не считать значения производной функции, поскольку это и есть угловой коэффициент k = -2.


Дана функция f(x)=x^3+6x^2+7x-2 напишите уравнение касательной к графику функции y=f(x) параллельной
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота