Проблемы, указанные автором: проблемы демографии, безработица, неполное использование социальных и экономических возможностей общества, дефицит и нерациональное управление ресурсами, неэффективность принимаемых мер, инфляция, отсутствие безопасности и гонка вооружений, загрязнение среды и разрушение биосферы, заметное уже сегодня воздействие человека на климат.
Фрагмент текста: «нынешняя, полная чудес и противоречий фаза прогресса, принеся человеку множество щедрых подарков, в то же время глубоко изменила нашу маленькую человеческую вселенную, поставила перед человеком невиданные доселе задачи и грозит ему неслыханными бедами».
Примеры противоречивости прогресса:
1) развитие атомной электроэнергетики позволяет повысить эффективность производства, однако может быть опасным для окружающей среды и человека в случае аварий на АЭС;
2) использование Интернета позволяет увеличить темы коммуникации между людьми, при этом может вызвать определённую зависимость и другие психологические проблемы;
3) развитие биоинженерии и исследований в области генетики выводит на новый уровень возможности медицины по лечению и профилактике болезней, но при этом создаёт множество этических проблем (например, клонирование).
Мир стремительно меняется, особенно в области новых технологий, человек не успевает адаптироваться к новым возможностям, и это порождает ряд проблем (технологические аварии, структурная безработица и т. д.).
В условиях крайней нестабильности и неустойчивости человеку психологически трудно справляться с вызовами времени, и это, в свою очередь, усиливает трудность адаптации к новым изменениям.
Изменения культуры и общества происходят неравномерно: для разных регионов мира актуальны разные запросы, что делает затруднительным поиск ответов в вопросе решения глобальных проблем.
Что бы построить график данной функции, исследуем данную функцию:
1. Область определения: Так как данная функция имеет смысл при любом х. То:
2. Область значения: Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0): - где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции: Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений. Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания. Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то: --------------------------------------------------------------- 6. Экстремум функции. Так как а>0 и функция квадратичная. То вершина является минимумом данной функции. Следовательно:
Объяснение:
Проблемы, указанные автором: проблемы демографии, безработица, неполное использование социальных и экономических возможностей общества, дефицит и нерациональное управление ресурсами, неэффективность принимаемых мер, инфляция, отсутствие безопасности и гонка вооружений, загрязнение среды и разрушение биосферы, заметное уже сегодня воздействие человека на климат.
Фрагмент текста: «нынешняя, полная чудес и противоречий фаза прогресса, принеся человеку множество щедрых подарков, в то же время глубоко изменила нашу маленькую человеческую вселенную, поставила перед человеком невиданные доселе задачи и грозит ему неслыханными бедами».
Примеры противоречивости прогресса:
1) развитие атомной электроэнергетики позволяет повысить эффективность производства, однако может быть опасным для окружающей среды и человека в случае аварий на АЭС;
2) использование Интернета позволяет увеличить темы коммуникации между людьми, при этом может вызвать определённую зависимость и другие психологические проблемы;
3) развитие биоинженерии и исследований в области генетики выводит на новый уровень возможности медицины по лечению и профилактике болезней, но при этом создаёт множество этических проблем (например, клонирование).
Мир стремительно меняется, особенно в области новых технологий, человек не успевает адаптироваться к новым возможностям, и это порождает ряд проблем (технологические аварии, структурная безработица и т. д.).
В условиях крайней нестабильности и неустойчивости человеку психологически трудно справляться с вызовами времени, и это, в свою очередь, усиливает трудность адаптации к новым изменениям.
Изменения культуры и общества происходят неравномерно: для разных регионов мира актуальны разные запросы, что делает затруднительным поиск ответов в вопросе решения глобальных проблем.
Откуда задание и тот ли это предмет?
Что бы построить график данной функции, исследуем данную функцию:
1. Область определения:
Так как данная функция имеет смысл при любом х. То:
2. Область значения:
Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.
Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0):
- где D дискриминант.
Найдем дискриминант:
Теперь находим саму область:
3. Нули функции:
Всё что требуется , это решить уравнение.
Следовательно, функция равна нулю в следующих точках:
4. Зная нули функции, найдем промежутки положительных и отрицательных значений.
Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
То есть:
5. Промежутки возрастания и убывания.
Для этого найдем вершину параболы:
Промежуток убывания:
Промежуток возрастания:
Если вы изучали понятие экстремума, то:
---------------------------------------------------------------
6. Экстремум функции.
Так как а>0 и функция квадратичная. То вершина является минимумом данной функции.
Следовательно:
---------------------------------------------------------------
7. Ось симметрии
Зная вершину, имеем следующее уравнение оси симметрии:
Основываясь на данных, строим график данной функции. (во вложении).