Дана функция у = - 96/хНайдите: 1) значение функции, если значение аргумента равно: 3; 6; 0,4; 2) значение аргумента, при котором значение функции равно: 12; 36; 100.
Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Примеры: 14 и 25 взаимно просты, а 15 и 25 не взаимно просты (у них имеется общий делитель 5).
Наглядное представление: если на плоскости построить «лес», установив на точки с целыми координатами «деревья» нулевой толщины, то из начала координат видны только деревья, координаты которых взаимно просты.
8, 15 — не простые, но взаимно простые. 6, 8, 9 — взаимно простые числа, но не попарно взаимно простые. 8, 15, 49 — попарно взаимно простые.
Если разных цветов меньше 10, то по-любому найдется 11 кубиков одного цвета. Например, если всего 9 цветов, и мы покрасим по 10 кубиков в каждый цвет, то мы используем 90 кубиков. Остается 11. Любой из них красим в любой из наших 9 цветов - и получаем 11 кубиков одного цвета. Если всего 10 цветов, то, покрасив по 10 кубиков в каждый цвет, мы получим 100 цветных кубиков. Красим 101-ый кубик в любой цвет, и получаем 11 кубиков одного цвета. Теперь пусть у нас больше 10 разных цветов. Например, 11. Тогда мы всегда сможем выбрать 11 кубиков, покрашенных в 11 разных цветов. Если цветов будет еще больше, например, 15, то выбрать 11 кубиков разных цветов будет еще проще. Таким образом, мы всегда можем найти или 11 одинаковых, или 11 разных кубиков.
Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Примеры: 14 и 25 взаимно просты, а 15 и 25 не взаимно просты (у них имеется общий делитель 5).
Наглядное представление: если на плоскости построить «лес», установив на точки с целыми координатами «деревья» нулевой толщины, то из начала координат видны только деревья, координаты которых взаимно просты.
8, 15 — не простые, но взаимно простые.
6, 8, 9 — взаимно простые числа, но не попарно взаимно простые.
8, 15, 49 — попарно взаимно простые.
Например, если всего 9 цветов, и мы покрасим по 10 кубиков в каждый цвет, то мы используем 90 кубиков. Остается 11. Любой из них красим в любой из наших 9 цветов - и получаем 11 кубиков одного цвета.
Если всего 10 цветов, то, покрасив по 10 кубиков в каждый цвет, мы получим 100 цветных кубиков. Красим 101-ый кубик в любой цвет, и получаем 11 кубиков одного цвета.
Теперь пусть у нас больше 10 разных цветов. Например, 11.
Тогда мы всегда сможем выбрать 11 кубиков, покрашенных в 11 разных цветов.
Если цветов будет еще больше, например, 15, то выбрать 11 кубиков разных цветов будет еще проще.
Таким образом, мы всегда можем найти или 11 одинаковых,
или 11 разных кубиков.