Дана функция: у=х²+2х-8 a) Укажите направление ветвей параболы
b) запишите координаты вершины параболы;
c) запишите ось симметрии параболы;
d) найдите точки пересечения графика с осями координат;
e) постройте график функции.
f) определите, в каких четвертях находится график функции;
Чтобы выяснить,какая из точек не принадлежит графику достаточно координаты этих точек подставить в функцию,которой задан график.
Если получится верное равенство,то точка принадлежит графику, а если неверное, то не принадлежит.
Данная функция прямая, параллельная оси ОХ, вида
у=k*х+b
k=0
k – угловой коэффициент , b – свободный член(-5) , x – независимая переменная.
у=0*х-5
НО
Мы видим , что данная функция не зависит от Х, при любом его значении у=-5 , то есть можно без расчетов найти точку,которая не принадлежит графику. Это точка 3, потому что у=0,а не -5.
Если мы этого не видим,то подставляем:
1) (0: -5)
-5=0*0-5
-5=-5 - принадлежит
2) (-5:-5)
-5=0*-5-5
-5=-5 - принадлежит
3) (-5: 0 )
0=0*-5-5
0≠-5 - не принадлежит
4) (5: -5 )
-5=0*5-5
-5=-5 - принадлежит
В решении.
Объяснение:
а)Найдите координаты точек пересечения прямой у=3х-1 с осью абсцисс.
При пересечении графиком оси Ох у=0
у=0
0=3х-1
-3х= -1
х= -1/-3
х=1/3
Координаты пересечения графиком оси Ох (1/3; 0)
б) найдите координаты точек пересечения графиков функций
у= -3х+2 и у=2х+1.
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
у= -3х+2 у=2х+1
Таблицы:
х -1 0 1 х -1 0 1
у 5 2 -1 у -1 1 3
Согласно графика, координаты точки пересечения графиков (0,2; 1,4)