Дана функция у-х2- 6х +8 А) Запишите координаты вершины параболы: Б) Ось симметрии параболы; B) Найти точки пересечения с осями координат (нули и точка С) Г) В каких четвертях располагается график? Д) Постройте график функции
Поскольку модуль слева это модуль от суммы положительного числа 3 и модуля, то большой модуль положителен и раскрывается как уравнение вида abs(x+2)+3=4 и решается как abs(x+2)=1 и x+2=1 или x-2=-1. а если бы у тебя было бы уравнение abs(abs(x+2)-3)=4, то пришлось бы рассмотреть уравнения abs(x+2)=4 и abs(x+2)=-4 только когда у тебя по модулем находится сумма положительного числа и модуля от выражения, содержащего переменную x ты рассматриваешь уравнение в варианте (заменяешь скобки модуля на обычные скобки) поскольку при сложении положительного числа и модуля какого-либо выражения их сумма не может быть отрицательна.
{-17х² + 13у² - 220 = 0
Из первого уравнения х = 13у - 110
Вместо х подставим во второе уравнение
- 17 * (13у - 110)² + 13у² - 220 = 0
- 17 * (169у² - 2860у + 12100) + 13у² - 220 = 0
- 2873у² + 48620у - 205700 + 13у² - 220 = 0
- 2860у² + 48620у - 205920 = 0
Сократив на (- 2860), имеем
у² - 17у + 72 = 0
D = 289 - 4 * 1 * 72 = 289 - 288 = 1
√D = √1 = 1
у₁ = (17 + 1)/2 = 9
у₂ = (17 - 1)/2 = 8
При у₁ = 9 находим х₁ = 13*9 - 110 = 117 - 110 = 7 Первое решение {7; 9}
При у₂ = 8 находим х₂ = 13*8 - 110 = 104 - 110 = - 6 Второе решение {-6; 8}
ответ: {7; 9} и {-6; 8}
2 задание
n-m =(a-2)²
p-n=(b-3)²
m-p=(c-4)²
Извлекаем корни из обеих частей каждого равенства
√(n-m) = √(a-2)²
√(p-n) = √(b-3)²
√(m-p) = √(c-4)²
Получаем
√(n-m) = a-2
√(p-n) = b-3
√(m-p) = c-4
Складываем все эти три равенства
√(n-m) + √(p-n) + √(m-p) = a + b + c - 2 - 3 - 4
√(n-m) + √(p-n) + √(m-p) = a + b + c - 9
√(n-m) + √(p-n) + √(m-p) + 9 = a + b + c
Искомая сумма получена
a + b + c = √(n-m) + √(p-n) + √(m-p) + 9