Если неравенство содержит несколько различных модулей, то находят значения , при которых выражение, стоящее под знаком модуля, равно нулю. Найденные значения разбивают числовую прямую на интервалы, на каждом из которых выражение под модулем сохраняет знак. А потом на каждом интервале раскрывают модули и решают полученную систему. Объединение решений составляет множество решений данного неравенства.
1) Найдем нули модулей:
2) Начертим числовую координатную прямую и отметим найденные нули модулей, которые разбивают данную ось на 4 области (см. вложение).
3) Решим систему уравнений на каждом интервале, раскрывая модуль на каждом участке с правила (при этом где-то нужно ноль модуля включить):
СК высота, АМ биссектриса, BL медиана
Объяснение:
АМ биссектриса делит угол пополам
BL медиана делит сторону пополам
СК высота — перпендикуляр, опущенный из вершины треугольника на противоположную сторону
Биссектрисой треугольника называется отрезок, который соединяет вершину с противоположной стороной и делит соответствующий угол пополам.
Медиана — отрезок, соединяющий вершину треугольника с серединой ее противоположной стороны.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону.
Имеем неравенство, содержащее несколько модулей.
Если неравенство содержит несколько различных модулей, то находят значения , при которых выражение, стоящее под знаком модуля, равно нулю. Найденные значения разбивают числовую прямую на интервалы, на каждом из которых выражение под модулем сохраняет знак. А потом на каждом интервале раскрывают модули и решают полученную систему. Объединение решений составляет множество решений данного неравенства.
1) Найдем нули модулей:
2) Начертим числовую координатную прямую и отметим найденные нули модулей, которые разбивают данную ось на 4 области (см. вложение).
3) Решим систему уравнений на каждом интервале, раскрывая модуль на каждом участке с правила (при этом где-то нужно ноль модуля включить):
ответ: