В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
htntjtjt
htntjtjt
08.07.2020 03:34 •  Алгебра

Дана функция y=f(x), где f(x)={2x,еслиx≤−1x2,если−1 Найди f(−16)
короче тоже самое внизу


Дана функция y=f(x), где f(x)={2x,еслиx≤−1x2,если−1 Найди f(−16) короче тоже самое внизу

Показать ответ
Ответ:
fgioryughorhghu
fgioryughorhghu
24.07.2021 22:18
Проведем отрезки OB и OC, как показано на рисунке.
Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды)
Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2.
По теореме Пифагора:
OB2=OE2+EB2
OB2=242+(20/2)2
OB2=576+100=676
OB=26
OB=OC=26 (т.к. OB и OC - радиусы окружности)
По теореме Пифагора:
OC2=CF2+FO2
OC2=(CD/2)2+FO2
262=(CD/2)2+102
676=(CD/2)2+100
(CD/2)2=576
CD/2=24
CD=48
ответ: CD=48
0,0(0 оценок)
Ответ:
shkolar345
shkolar345
06.03.2021 18:55
1. Условие неполное.

2. b_2= \dfrac{1}{2} \cdot b_1= \dfrac{1}{2} \cdot 96=48
Знаменатель геометрической прогрессии:
   q= \dfrac{b_{n+1}}{b_n} = \dfrac{b_2}{b_1} = \dfrac{1}{2}

Вычислим теперь восьмой член геометрической прогрессии:
  b_n=b_1\cdot q^{n-1};\,\,\,\,\,\,\,\,\,\,\, \Rightarrow\,\,\,\,\,\, b_8=b_1\cdot q^7=96\cdot\bigg( \dfrac{1}{2} \bigg)^\big{2}=0.75

ответ: 0.75

3. Дано: b_1=-486;\,\,\,\,\,\, b_2=-162
Найти: S_7

       Решение:
Вычислим знаменатель геометрической прогрессии:
 q= \dfrac{b_2}{b_1} = \dfrac{-162}{-486} = \dfrac{1}{3}

Сумма nпервых членов вычисляется по формуле:
S_n= \dfrac{b_1\cdot(1-q^n)}{1-q}

Сумма первых 7-ми членов геометрической прогрессии:
 S_7= \dfrac{b_1\cdot(1-q^7)}{1-q} = -\dfrac{486\cdot\bigg(1-\bigg( \dfrac{1}{3}\bigg )^\big{7}\bigg)}{1- \dfrac{1}{3} } =- \dfrac{2186}{3}

4. b_4=-8;\,\,\,\,\,\, q=2

Первый член геометрической прогрессии:
  b_1= \dfrac{b_n}{q^{n-1}} = \dfrac{b_4}{q^3} = \dfrac{-8}{2^3} =-1

Cумма первых 5-ти членов геометрической прогрессии:
 S_5= \dfrac{b_1(1-q^5)}{1-q} = \dfrac{(-1)\cdot(1-2^5)}{1-2}= -31

5. 
b_n=0.2\cdot 5^n\\ \\ b_1=0.2\cdot 5=1\\ b_2=0.2\cdot 5^2=5\\ b_3=0.2\cdot 5^3=25
Знаменатель: q= \dfrac{b_2}{b_1} = \dfrac{5}{1} =5

Видим, что каждая последовательность умножается на 5. Следовательно, заданная последовательность - геометрическая прогрессия
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота