выпишем координаты данных векторов:
a)
координаты:
скалярное произведение векторов - число:
б)
векторное произведение векторов - вектор, находим его координаты:
находим модуль(длину) полученного вектора:
в)
смешанное произведение векторов - число, находим его:
г)
Координаты:
Векторы коллинеарны, если их соответствующие кординаты пропорциональны
Проверим это утверждение:
Данное равенство неверно, значит векторы b и c не коллинеарны
Векторы ортогональны, если их скалярное произведение равно нулю.
- верно, значит данные векторы ортогональны
Векторы b и c ортогональны
д)
Три вектора компланарны, если их смешанное произведение равно нулю.
-2940 не равно нулю => данные векторы не компланарны.
выпишем координаты данных векторов:
a)
координаты:
скалярное произведение векторов - число:
б)
координаты:
векторное произведение векторов - вектор, находим его координаты:
находим модуль(длину) полученного вектора:
в)
координаты:
смешанное произведение векторов - число, находим его:
г)
Координаты:
Векторы коллинеарны, если их соответствующие кординаты пропорциональны
Проверим это утверждение:
Данное равенство неверно, значит векторы b и c не коллинеарны
Векторы ортогональны, если их скалярное произведение равно нулю.
Проверим это утверждение:
- верно, значит данные векторы ортогональны
Векторы b и c ортогональны
д)
Координаты:
Три вектора компланарны, если их смешанное произведение равно нулю.
-2940 не равно нулю => данные векторы не компланарны.
выпишем координаты данных векторов:
a)
координаты:
скалярное произведение векторов - число:
б)
координаты:
векторное произведение векторов - вектор, находим его координаты:
находим модуль(длину) полученного вектора:
в)
координаты:
смешанное произведение векторов - число, находим его:
г)
Координаты:
Векторы коллинеарны, если их соответствующие кординаты пропорциональны
Проверим это утверждение:
Данное равенство неверно, значит векторы b и c не коллинеарны
Векторы ортогональны, если их скалярное произведение равно нулю.
Проверим это утверждение:
- верно, значит данные векторы ортогональны
Векторы b и c ортогональны
д)
Координаты:
Три вектора компланарны, если их смешанное произведение равно нулю.
-2940 не равно нулю => данные векторы не компланарны.