Попробую объяснить) возьмём 8 и рассмотрим, на что будет оканчиваться, если 8 будет в степени 1: 8, 2: 4, 3: 2, 4: 6, 5: 8, 6: 4 - получаем цикл, где идёт повторение каждую 4-ую степень. Т.к. 2016 делится на 4, следовательно 8^2016 оканчивается на 6(8^4=...6). Тогда следующее число степенью 2017 будет оканчиваться на 8 Далее проделываем такой же анализ для 2017, цикл будет выглядеть следующим образом 1:7, 2:9, 3:3, 4:1, 5:7. Получаем, что 2017^2017 будет оканчиваться на 7. Ну и если сложить 2017^2017 и 8^2017 то конечное число будет оканчиваться на 5(7+8=15), следовательно сумма делится на 5, ч.т.к
2x-x²>0
x(2-x)> 2-x>0 ⇒x<2
2x-x²≠1 т.к ㏒₂ₓ(1)=0, а на 0 делить нельзя
х²-2х+1=0
D=4-4=0
x≠1
x∈(0;1/2)∪(1/2;1)∪(1;2)
возьмём 8 и рассмотрим, на что будет оканчиваться, если 8 будет в степени
1: 8, 2: 4, 3: 2, 4: 6, 5: 8, 6: 4 - получаем цикл, где идёт повторение каждую 4-ую степень. Т.к. 2016 делится на 4, следовательно 8^2016 оканчивается на 6(8^4=...6). Тогда следующее число степенью 2017 будет оканчиваться на 8
Далее проделываем такой же анализ для 2017, цикл будет выглядеть следующим образом 1:7, 2:9, 3:3, 4:1, 5:7. Получаем, что 2017^2017 будет оканчиваться на 7.
Ну и если сложить 2017^2017 и 8^2017 то конечное число будет оканчиваться на 5(7+8=15), следовательно сумма делится на 5, ч.т.к