1) Ставим 1 том первым. Вторым может быть любой, кроме 4. Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта. Всего 24*4 = 96 вариантов. 2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта. Остальные 3 тома как угодно. Это 6 вариантов. Всего 4*3*6 = 72 варианта. 3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов. Второй - любой, кроме 4. Это 3 варианта. Четвертый - тоже любой, кроме 4. Это 2 варианта. Пятый и шестой - какие угодно. Это 2 варианта. Всего 5*3*2*2 = 60 вариантов. 4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов. 5) Ставим 1 том пятым. Это аналогично 2). 72 варианта. 6) Ставим 1 том последним. Это аналогично 1). 96 вариантов. Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта.
Всего 24*4 = 96 вариантов.
2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта.
Остальные 3 тома как угодно. Это 6 вариантов.
Всего 4*3*6 = 72 варианта.
3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов.
Второй - любой, кроме 4. Это 3 варианта.
Четвертый - тоже любой, кроме 4. Это 2 варианта.
Пятый и шестой - какие угодно. Это 2 варианта.
Всего 5*3*2*2 = 60 вариантов.
4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов.
5) Ставим 1 том пятым. Это аналогично 2). 72 варианта.
6) Ставим 1 том последним. Это аналогично 1). 96 вариантов.
Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
Найдите наибольшее и наименьшее значения функции :
1) y = - x² - 3x - 6,25 = - 4 - ( x + 1,5 )²
2) y = - x² - x + 3,75 = 4 - ( x + 0,5 )²
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ответ: 1) max y = - 4 ; нет минимума
2) max y = 4 ; нет минимума
- - - - - - -
ни четные ,ни нечетные
Объяснение:
1)
y = - x² - 3x - 6,25 = - ( x² +2x*(3/2) +(3/2)² - (3/2)²) - 6,25 =
= 9/4 -6,25 - ( x +3/2 )² =2,25 - 6,25 - ( x +3/2 )² = - 4 - ( x +3/2 )².
max y = - 4 , если ( x +3/2 )²=0 , т.е. если x = -3/2 = -1,5 ;
не имеет наименьшее значения
2)
y = - x² - x +3,75 = 4 - ( x + 0,5 )²
* * * y = - x² - x +3,75 = - ( x² +2x*(1/2) + (1/2)² - (1/2)² ) + 3,75 =
- ( x + 1/2 )² + 1/4 +3,75 = 4 - ( x + 0,5 )² * * *
max y = 4 , если x = - 0,5
не имеет наименьшее значения
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1) f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2) y = f(x) = √(x³ + x²) - 31*| x³ | , D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0⇒x ≥ -1
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( - ∞ ; - 1) * * *