Дана корзина с конфетами разных видов. Из всех конфет 3 конфеты «Буревестник», 8 конфет «Клубничные» и 11 конфет «Белочка». Найди, сколькими можно выбрать 3 конфеты так, чтобы это были 1 «Буревестник», 1 «Клубничная» и 1 «Белочка»?
Конфеты можно выбрать ___различными .
по условию это число равно:
5х+4=6у+5
5х-6у=5-4
5х-6у=1
5х=6у+1
5х - это число,делящееся на 5, кроме того за минусом 1, делящееся на 6
Подбираем числа делящиеся на 5:
15=14+1, не подходит, т. к.14 не делится на 6
25=24+1, вроде подходит, 24 делится на 6. Делаем проверку далее по условию. 25+4=29. Если это задуманное число, то при делении на 3, дает в остатке2. Верно. Далее, при делении на 4 дает в остатке 3. Неверно.
30=29+1 - нет
35=34+1 - нет
40= 39+1- нет
45= 44+1 - нет
50= 49+1 - нет
55=54+1 - да.
Тогда задуманное число 55+4=59.
59 при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3. Значит, оно.
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение: