В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kholdingmedia
kholdingmedia
09.07.2021 06:13 •  Алгебра

Дана квадратичная функция вида у = х2 + 2x – 3. Постройте ее график и найдите:
а) ось симметрии и промежутки возрастания и убывания;
б) координату точки пересечения графика функции с осью Оу;
в) нули функции:
г) промежутки знакопостоянства ​

Показать ответ
Ответ:
ogh30662
ogh30662
06.09.2022 00:50
Ну, если ты в действительно тапок, то лучше не высовывайся без хозяина на улицу, а то рискуешь быть облит святой водой священниками и бабушками
Так же ты можешь создать свой канал на ютубе и быстро стать популярным(не каждый день встретишь тапочка блогера)
В принципе можешь продаться ученым, но сильно рискуешь, кто знает, какие на тебе опыты поставят.
Можешь еще постоять где-нибудь на полочке, позволить собаки погрызть тебя, или дать коту себя во владения туалета, а вообще лучше сходить, почитать книгу и не писать всякую хрен
0,0(0 оценок)
Ответ:
olgas2000
olgas2000
06.01.2021 02:18

1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.

2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.

3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".

4) Знак интеграла (∫) используется для обозначения интеграла в математике.

5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.

6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.

8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.

9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].

11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).

12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота