Перепишем уравнение параболы в виде y=x²/8-1/4=1/8*(x²-2). Так как при любых значениях x x²≥0, то x²-2≥-2. Отсюда следует, что вершина параболы имеет ординату x=0, тогда y=-0,25. Значит, вершины координаты таковы: (0, -0,25). Для нахождения фокуса запишем уравнение параболы в виде x²=2*p*(y-y0). В нашем случае это уравнение имеет вид x²=2*4*(y-(-0,25)), так что p=4 и y0=-0,25. Фокус параболы имеет координаты (0,p/2), в нашем случае это (0,2). Директриса в нашем случае задаётся уравнением y+p/2=0, или y=-2.
Для нахождения фокуса запишем уравнение параболы в виде x²=2*p*(y-y0). В нашем случае это уравнение имеет вид x²=2*4*(y-(-0,25)), так что p=4 и y0=-0,25. Фокус параболы имеет координаты (0,p/2), в нашем случае это (0,2). Директриса в нашем случае задаётся уравнением y+p/2=0, или y=-2.