Первым делом необходимо выразить из одного (любого) уравнения одну неизвестную через другую и переписать получившееся выражение, оставив второе неизменным. То есть, сначала просто переписываешь систему, потом переписываешь получившееся выражение вместе с вторым уравнением. В данном случае это {х = 0 - 2у, 5х + у = -18} . Затем во второе выражение подставляешь вместо переменной (здесь вместо х) первое выражение и решаешь уже обычным у) + у = -18, -10у + у = - 18, -9у = -18, у = 2. И теперь по выведенной ранее формуле (х = 0 - 2у) находишь х: х = 0 - 2*2, х = -4. ответ: (-4; 2).
Решите квадратное неравенство;б)-49x^2+14x-1(больше или равно) 0 в)-3x^2 +x-2<0
б)-49x^2+14x-1≥ 0
найдем корни соответствующего кв. уравнения
-49x^2+14x-1= 0 -(7x-1)²=0 x=1/7.
графиком функции y=-49x^2+14x-1 является парабола, ветки которой направлены вниз,вершина - в точке с координатами (1/7;0) ⇒-49x^2+14x-1≥ 0 ⇔ x=1/7
в)-3x^2 +x-2<0
найдем корни соответствующего кв. уравнения
-3x^2+x-2= 0 ⇔ 3x^2-x+2= 0 ⇔ D=1-4·3·2<0, нет корней,
графиком функции y=-3x^2+x-2 является парабола, ветки которой направлены вниз,вершина - в точке ниже оси ох (т.к D=1-4·3·2<0) ⇒ -3x^2 +x-2<0 выполняется при всех х∉R, или x∉(-∞,+∞)
в)-3x^2 +x-2<0
б)-49x^2+14x-1≥ 0
найдем корни соответствующего кв. уравнения
-49x^2+14x-1= 0
-(7x-1)²=0 x=1/7.
графиком функции
y=-49x^2+14x-1
является парабола, ветки которой направлены вниз,вершина - в точке с координатами (1/7;0)
⇒-49x^2+14x-1≥ 0 ⇔ x=1/7
в)-3x^2 +x-2<0
найдем корни соответствующего кв. уравнения
-3x^2+x-2= 0 ⇔ 3x^2-x+2= 0 ⇔ D=1-4·3·2<0, нет корней,
графиком функции
y=-3x^2+x-2
является парабола, ветки которой направлены вниз,вершина - в точке ниже оси ох (т.к D=1-4·3·2<0)
⇒ -3x^2 +x-2<0 выполняется при всех х∉R, или x∉(-∞,+∞)