Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Координаты заданной точки: (3; -3).
2) Точка A(a;3), если a>0 расположена в 1 четверти ( или координатном угле ), где находятся положительные значения и х и у.
3) Точка В: х = -2 + 5 = 3,
у = 3 (как у точки А).
Точка С: х = 3,
у = 3 - 5 = -2.
Точка Д: х = -2 (как у точки А),
у = -2 (как у точки С).
4) Координаты точки M - середины отрезка AB, если A(5;3) и B(−7;−2):
М((5+(-7))/2=-1; (3+(-2))/2=0,5)
М(-1; 0,5).
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.