Дана точка K(−1). Определи координаты точек P и M, таких, что PM =8 и KP=3KM координаты точек P и M записывай так, чтобы координаты точки Р возрастали:
Согласно теореме Безу остаток от деления полинома на двучлен равен значению полинома в корне этого двучлена,в данной задаче на полином G(x) никаких дополнительных условий не наложено,значит он может быть неприводимым над полем вещественных чисел,однако все равно раскладываться в произведение двучленов вида
Где комплексно сопряжен z.
Полином G(x) примет вид
Re(z)-вещественная часть z,-модуль числа z.
Очевидно,что подставляя получившиеся корни в исходный многочлен используя теорему Безу вычисление получается мягко говоря неудобным.
Аналогичная ситуация со схемой Горнера.
А вот при делении полиномов столбиком исходный многочлен представим в виде:
Очевидно,что степень остатка должна быть меньше степени делителя и мы можем остаток разделить на полином G(x),домноженный на (-a-3),тогда для того чтобы остаток от деления был равен нулю,то есть чтобы F(x) делился на G(x) должна выполняться система:
Которая не имеет решений ни в поле действительных,ни в поле комплексных чисел.
Значит ни при каких значениях a полином G(x) не является делителем F(x).
ответ: 17,5 км/час. 2,5 км/час.
Объяснение:
катер 30 км по течению реки за 1,5 часа
и вернулся на туже пристань потратив на обратный путь 2 часа
найдите собственную скорость катера
и скорость течения реки.
Решение.
Находим скорость катера по течению S=v1t; 30=v1*1.5;
v=30/1.5;
v=20 км/час.
Находим скорость катера против течения S=v2t; 30=v2*2;
v2=30/2;
v2=15 км/час.
Находим скорость течения реки
2х=v2-v1, где х- скорость течения реки
2x=20-15;
2x=5;
x=2.5 км/час - . скорость течения реки. Тогда
собственная скорость катера равна:
20-2,5=17,5 км/час - собственная скорость катера
или
15+2.5 = 17,5 км/час - собственная скорость катера.
Согласно теореме Безу остаток от деления полинома на двучлен равен значению полинома в корне этого двучлена,в данной задаче на полином G(x) никаких дополнительных условий не наложено,значит он может быть неприводимым над полем вещественных чисел,однако все равно раскладываться в произведение двучленов вида
Где комплексно сопряжен z.
Полином G(x) примет вид
Re(z)-вещественная часть z,-модуль числа z.
Очевидно,что подставляя получившиеся корни в исходный многочлен используя теорему Безу вычисление получается мягко говоря неудобным.
Аналогичная ситуация со схемой Горнера.
А вот при делении полиномов столбиком исходный многочлен представим в виде:
Очевидно,что степень остатка должна быть меньше степени делителя и мы можем остаток разделить на полином G(x),домноженный на (-a-3),тогда для того чтобы остаток от деления был равен нулю,то есть чтобы F(x) делился на G(x) должна выполняться система:
Которая не имеет решений ни в поле действительных,ни в поле комплексных чисел.
Значит ни при каких значениях a полином G(x) не является делителем F(x).