Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.] Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см. Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.
Что и требовалось доказать.
Войти
АнонимМатематика12 марта 23:52
Разложите на множители квадратный трехчлен x^2-5x+4
ответ или решение1
Романов Василий
Для того, чтобы разложить на множители квадратный трехчлен x2 - 5x + 4 приравняем к нулю его и решим полученное полное квадратное уравнение:
x2 - 5x + 4 = 0;
Ищем дискриминант по формуле:
D = b2 - 4ac = (-5)2 - 4 * 1 * 4 = 25 - 16 = 9;
Ищем корни по формулам:
x1 = (-b + √D)/2a = (5 + √9)/2 = (5 + 3)/2 = 8/2 = 4;
x2 = (-b - √D)/2a = (5 - √9)/2 = (5 - 3)/2 = 2/2 = 1.
Для разложения на множители применим формулу:
ax2 + bx + c = a(x - x1)(x - x2).
x2 - 5x + 4 = (x - 4)(x - 1).
ответ: (x - 4)(x - 1).