составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
5x³ - 3x² - 3x + 5 = 0
5x³ +5 - 3x² - 3x = 5(x³ + 1) - 3x(x + 1) = 5(x + 1)(x² - x + 1) -3x(x + 1) = (x + 1)(5x² -5x + 5 - 3x) = (x + 1)(5x² - 8x + 5) = 0
x = -1
5x² - 8x + 5 = 0
D = 64 - 80 < 0
x ∈ ∅ при x ∈ R
ответ -1
(x + 1/x)² - 5(x + 1/x) + 6 = 0
x ≠ 0
x + 1/x = t
t² - 5t + 6 = 0
D = 25 - 24 = 1
t12 = (5 +- 1)/2 = 2 3
1. t = 2
x + 1/x = 2
(x² - 2x + 1)/x = 0
(x - 1)²/ x = 0
x = 1
2. t = 3
x + 1/x = 3
(x² - 3x + 1)/x = 0
D = 9 - 4 = 5
x12 = (3 +- √5)/2
ответ (3 +- √5)/2, 1
x⁴ - 5x³ + 8x² - 5x + 1 = 0
x ≠ 0
разделим на x²
1/x² + x² = 1/x² + 2*x²*1/x² + x² - 2*x²*1/x² = (x + 1/x)² - 2
x² - 5x + 8 - 5/x + 1/x² = x² + 1/x² - 5(x + 1/x) + 8 = (x + 1/x)² - 2 - 5(x + 1/x) + 8 = (x + 1/x)² - 5(x + 1/x) + 6 = 0
x + 1/x = t
t² - 5t + 6 = 0
это уравнение было номер 2
D = 25 - 24 = 1
t12 = (5 +- 1)/2 = 2 3
1. t = 2
x + 1/x = 2
(x² - 2x + 1)/x = 0
(x - 1)²/ x = 0
x = 1
2. t = 3
x + 1/x = 3
(x² - 3x + 1)/x = 0
D = 9 - 4 = 5
x12 = (3 +- √5)/2
ответ (3 +- √5)/2, 1