Дано дифференциальное уравнение 1-го порядка и точка М. Определить тип дифференциального уравнения. Найти общее решение дифференциального уравнения, уравнение интегральной кривой, проходящей через точку М и уравнения еще 4-х интегральных кривых (любых). Построить все эти кривые в системе координат. y'=3 M(0;1)
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
1.Составить во к следующим ответам.
1. I am doing my homework now.
2. They usually do their homework in the evening
3. My mother went shopping last Friday.
4. My friends have been in Italy 2 years ago.
2. Используйте глаголы в скобках в правильной форме.
1. I (has written, wrote, have written)
the letter yesterday.
2. Tamara (has, have) already (cleans, cleaned) the room.
3. I (have done, is doing, am doing) my lessons now.
4. He (has done, have done, did) his exercises till six o’clock.
Объяснение:
1.Составить во к следующим ответам.
1. I am doing my homework now.
2. They usually do their homework in the evening
3. My mother went shopping last Friday.
4. My friends have been in Italy 2 years ago.
2. Используйте глаголы в скобках в правильной форме.
1. I (has written, wrote, have written)
the letter yesterday.
2. Tamara (has, have) already (cleans, cleaned) the room.
3. I (have done, is doing, am doing) my lessons now.
4. He (has done, have done, did) his exercises till six o’clock.
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*), . И правда:
(*) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**), . И правда:
(**) Очевидно, что для любого допустимого значения выражение определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.