Дано: f(x)={x2+4x+3,еслиx∈[−5;0]x+1−−−−√+2,еслиx∈(0;3] Построй график данной функции. При него найди интервалы возрастания и убывания, экстремумы (т. е. максимумы и минимумы) функции, наибольшее и наименьшее значения функции, интервалы знакопостоянства функции, чётность, нули функции и точки пересечения с осями x и y.
2. Экстремум функции (в соответствующее окно вводи целое число — положительное или отрицательное): f( ) = .
Это максимум функции минимум функции
3. Наибольшее и наименьшее значения функции (в соответствующее окно вводи целое число — положительное или отрицательное):
a) наибольшее значение функции f( ) = ; б) наименьшее значение функции f( ) = .
4. Интервалы знакопостоянства функции:
a) функция положительна, если x∈[−5;−3)∪(−1;3] x∈[−2;3] x∈(−5;−3)∪(−1;3) x∈[−5;−3]∪[−1;3] б) функция отрицательна, если x∈(−3;−1) x∈[−3;−1] x∈(−3;−1] x∈[−5;−2]
5. Функция нечётная чётная ни чётная, ни нечётная
6. Нули функции (выбери несколько вариантов ответов): x=3 x=−1 x=0 x=−2 x=−3
7. Точки пересечения графика функции с осями x и y:
a) точки пересечения с осью x и (вводи координаты точек в возрастающей последовательности, не используй пробел); б) точка пересечения с осью y (вводи координаты точек, не используя пробел; у точек, у которых невозможно определить точные координаты, вводи приближенные значения до двух цифр после запятой).
Если я все верно понял и разобрал твой пример, то: №1 ((3x-4/x+1 - 2x-5/x+1 + x/x+1 )/(x/x^2-1)) = Делю пополам уравнения и по действиям, думаю, что вы поймете. Начну с конца. (x/x^2-1) = ((x+1)(x-1)/x) \\ Умножим числитель на величину, обратную знаменателю x/x^2-1 ((3x-4-(2x-5))/x+1) + x/x+1)) = (1+x/x+1) \\ Поделили на две части уравнения, и пришло время - Объединить пример. (1+x/x+1) * ((x+1)(x-1))/x) \\ В данном уравнении, первую дробь Умножаем на знаменатель и получаем вывод: (1(x+1)/1(x+1) + x/x+1) ((2x+1)(x+1) * ((x+1)(x-1)/x) =((2x+1)/1)((x-1)/x) =(2x+1)(x-1)/x ответ на первый пример: (2x+1)(x-1)/x
№2
Не особо понял мысль твоего уравнения, в следующий раз, будьте добры, отправлять фотографию примера, иногда бывает, что за готовое решение ставят жалобу и человек, который решал дают страйк!
(a - a^2-3/a-2): 3-2a/4-4a+a^2 = Так же как и в первом случае, начну с конца! Переворачиваем дробь : ((4-4a+a^2)/3-2a) = ((2-a)^2)/(3-2a) \\ Получили по формуле квадратного уравнения! Вернемся к первой части, домножаем уравнение на (a-2) (a(a-2)/(a-2) - (a^2-3)/(a-2)) * (((2-a)^2)/(3-2a)); =>Скомбинируем уравнение и получаем: ((-2a+3/a-2))/((2-a)^2/(3-2a)) = Упростим числитель и его члены => )(2-a)^2/(a-2) => (a-2)(a-2)/(a-2)*1 = > a-2 ответ: a-2
1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
№1
((3x-4/x+1 - 2x-5/x+1 + x/x+1 )/(x/x^2-1)) =
Делю пополам уравнения и по действиям, думаю, что вы поймете.
Начну с конца.
(x/x^2-1) = ((x+1)(x-1)/x) \\ Умножим числитель на величину, обратную знаменателю x/x^2-1
((3x-4-(2x-5))/x+1) + x/x+1)) = (1+x/x+1) \\ Поделили на две части уравнения, и пришло время - Объединить пример.
(1+x/x+1) * ((x+1)(x-1))/x) \\ В данном уравнении, первую дробь Умножаем на знаменатель и получаем вывод:
(1(x+1)/1(x+1) + x/x+1)
((2x+1)(x+1) * ((x+1)(x-1)/x) =((2x+1)/1)((x-1)/x) =(2x+1)(x-1)/x
ответ на первый пример: (2x+1)(x-1)/x
№2
Не особо понял мысль твоего уравнения, в следующий раз, будьте добры, отправлять фотографию примера, иногда бывает, что за готовое решение ставят жалобу и человек, который решал дают страйк!
(a - a^2-3/a-2): 3-2a/4-4a+a^2 =
Так же как и в первом случае, начну с конца!
Переворачиваем дробь :
((4-4a+a^2)/3-2a) = ((2-a)^2)/(3-2a) \\ Получили по формуле квадратного уравнения!
Вернемся к первой части, домножаем уравнение на (a-2)
(a(a-2)/(a-2) - (a^2-3)/(a-2)) * (((2-a)^2)/(3-2a));
=>Скомбинируем уравнение и получаем:
((-2a+3/a-2))/((2-a)^2/(3-2a)) =
Упростим числитель и его члены
=> )(2-a)^2/(a-2) =>
(a-2)(a-2)/(a-2)*1 = > a-2
ответ: a-2
a1(1) = 1; d1 = 2
Миша - тоже по арифметической прогрессии
a2(1) = 2; d2 = 2
Всего Боря взял
S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60
7 < n < 8
Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13.
И у Бори получилось S1(7) = 7^2 = 49 конфет.
Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11.
Миша последний раз взял 14. Это тоже 7-ой раз.
Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56
Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11
На каждом этаже квартир больше 2, но меньше 7, то есть 3.
Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира.
Квартира номер 42 - последняя во 2 подъезде.
Квартир с номерами больше 42 во 2 подъезде нет.
Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры.
Квартира номер 42 - последняя на 3 этаже.