При x≤-1 - функция положительная При -1≤x≤4 - функция отрицательная При x≥4 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4 ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная При -6≤x<10 - функция отрицательная При x>10 - функция положительная выбираем те интервалы, где функция положительная (неотрицательная): x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
1) выражения имею смысл при х>=0 составим и решим неравенство 1/9 х^2-2x+9>=0|(x9) x^2-18x+81>=0 регим как квадратное уравнение x^2-18x+81=0 (х-9)^2=0 х-9=0 х=9 теперь необходимо нарисовать ось Ох и на ней отметить точку х=9, которая разделит всю ось х на два интервала: 1(- беск;9] и [9; беск), определим знак нашего неравенства на каждом из интервалов (- беск; 9]: 0: 0^2-18*0+81=0-0+81=81 >0, верно 2. [9; беск): 10: 10^2-18*10+81=100-180+81=181-100=81 >0, верно данное выражение имеет смысл пи любых значениях х, ответ хЄ(- беск;9]U [9; беск) 2) Аналогично решаем и второе уравненеи (-9х^2+2х-2)^(-1)>=0 1/(-9x^2+2x-2)>=0 так как выражение в знаменателе то оно должно быть строго >0 1/(-9x^2+2x-2)>0 Решим как квадратное уравнение 1/(-9х^2+2х-2)=0 знаменатель не может быть равным нолю, поэтому нет решений Следовательно данное неравенство не имеет решений, а выражение не имеет смысла при любых значениях х ответ:х не принадлежит R
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)
2)
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)
3) подкоренное выражение должно быть неотрицательным:
-1≤x≤4/3
выражения имею смысл при х>=0
составим и решим неравенство
1/9 х^2-2x+9>=0|(x9)
x^2-18x+81>=0
регим как квадратное уравнение
x^2-18x+81=0
(х-9)^2=0
х-9=0
х=9
теперь необходимо нарисовать ось Ох и на ней отметить точку х=9, которая разделит всю ось х на два интервала: 1(- беск;9] и [9; беск), определим знак нашего неравенства на каждом из интервалов
(- беск; 9]:
0: 0^2-18*0+81=0-0+81=81 >0, верно
2. [9; беск):
10: 10^2-18*10+81=100-180+81=181-100=81 >0, верно
данное выражение имеет смысл пи любых значениях х,
ответ хЄ(- беск;9]U [9; беск)
2)
Аналогично решаем и второе уравненеи
(-9х^2+2х-2)^(-1)>=0
1/(-9x^2+2x-2)>=0
так как выражение в знаменателе то оно должно быть строго >0
1/(-9x^2+2x-2)>0
Решим как квадратное уравнение
1/(-9х^2+2х-2)=0
знаменатель не может быть равным нолю, поэтому нет решений
Следовательно данное неравенство не имеет решений, а выражение не имеет смысла при любых значениях х
ответ:х не принадлежит R