дано квадратное уравнение 5х²-2х-с=0 а)При каких значениях параметра уравнение имеет два одинаковых действительных корня б)Найдите эти корни уравнения
Чтобы квадратное уравнение имело корни, необходимо, чтобы дискриминант был больше нуля( 2 корня) или равен нулю ( 1 корень). (a - 3)*x^2 - 2(3a - 4)*x + 7a - 6 = 0; Слегка преобразуем уравнение: (a-3)*x^2 + (8-6a)*x + (7a - 6) =0; Тогда коэффициенты для нахождения дискриминанта будут такие: a = a - 3; b = 8 - 6a ; c = 7a - 6; D = b^2 - 4ac = (8-6a)^2 - 4*(a-3)(7a - 6)= =64 - 96a + 36 a^2 - 4(7a^2 - 21a - 6a + 18) = = 36a^2 - 96 a + 64 - 28a^2 + 108 a - 72 = =8a^ + 12 a - 8 . D ≥ 0; следовательно 8a^2 + 12a - 8 ≥ 0; сократим на 2 и получим: 4a^2 + 6a - 4 ≥ 0; D = 36 + 64 = 100= 10^2; a1 = (-6 + 10) /8 = 1/2; a2 = (-6-10)/ 8 = - 2. Разложим выражение на множители: 4(a - 1/2)(a +2) ≥ 0;Используем метод интервалов ( точки закрашены, так как в условии не сказано, что 2 корня, а просто, что есть корни., то есть может 2 , а может и 1 корень)
+ - + (-2)(1/2) a a ∈ ( - бесконечность; -2] U [1/2; + бесконечность)
(a - 3)*x^2 - 2(3a - 4)*x + 7a - 6 = 0;
Слегка преобразуем уравнение:
(a-3)*x^2 + (8-6a)*x + (7a - 6) =0;
Тогда коэффициенты для нахождения дискриминанта будут такие:
a = a - 3; b = 8 - 6a ; c = 7a - 6;
D = b^2 - 4ac = (8-6a)^2 - 4*(a-3)(7a - 6)=
=64 - 96a + 36 a^2 - 4(7a^2 - 21a - 6a + 18) =
= 36a^2 - 96 a + 64 - 28a^2 + 108 a - 72 =
=8a^ + 12 a - 8 .
D ≥ 0; следовательно 8a^2 + 12a - 8 ≥ 0; сократим на 2 и получим:
4a^2 + 6a - 4 ≥ 0;
D = 36 + 64 = 100= 10^2;
a1 = (-6 + 10) /8 = 1/2;
a2 = (-6-10)/ 8 = - 2. Разложим выражение на множители:
4(a - 1/2)(a +2) ≥ 0;Используем метод интервалов ( точки закрашены, так как в условии не сказано, что 2 корня, а просто, что есть корни., то есть может 2 , а может и 1 корень)
+ - +
(-2)(1/2) a
a ∈ ( - бесконечность; -2] U [1/2; + бесконечность)
В решении.
Объяснение:
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость лодки по течению.
у - скорость лодки против течения.
По условию задачи система уравнений:
2х + 5у = 120
7у - 3х = 52
Выразить х через у в первом уравнении:
2х = 120 - 5у
х = (120 - 5у)/2
х = 60 - 2,5у
Подставить выражение во второе уравнение и вычислить у:
7у - 3(60 - 2,5у) = 52
7у - 180 + 7,5у = 52
14,5у = 52 + 180
14,5у = 232
у = 232/14,5
у = 16 (км/час) - скорость лодки против течения.
Найти х:
х = 60 - 2,5у
х = 60 - 2,5*16
х = 60 - 40
х = 20 (км/час) - скорость лодки по течению.
Проверка:
2*20 + 5*16 = 40 + 80 = 120 (км), верно;
7*16 - 3*20 = 112 - 60 = 52 (км), верно.