Число делится на 10 только в том случае, если оно оканчивается цифрой 0.
Посмотрим, какой цифрой оканчивается каждое слагаемое.
1) число 7 в разных степенях оканчивается разными цифрами. Попробуем установить закономерность.
Т.е. последние цифры записи степеней семерки чередуются так: 7 - 9 - 3 - 1 и по кругу.
Т.к. оканчивается цифрой 1, то также оканчивается цифрой 1. Тогда число оканчивается цифрой 7.
2) Для степеней четверки закономерность проще - 4 - 6 и по кругу:
Поскольку оканчивается цифрой 6, то также оканчивается цифрой 6.
3) Закономерность для степеней тройки - 3 - 9 - 7 - 1 и по кругу:
Т.к. оканчивается цифрой 7, то также оканчивается цифрой 7.
В итоге слагаемые оканчиваются цифрами 7, 6 и 7 соответственно. Если их сложить, то в разрядке единиц класса единиц получим 0. Т.е. число оканчивается цифрой 0 - следовательно, оно таки делится на 10.
Число делится на 10 только в том случае, если оно оканчивается цифрой 0.
Посмотрим, какой цифрой оканчивается каждое слагаемое.
1) число 7 в разных степенях оканчивается разными цифрами. Попробуем установить закономерность.
Т.е. последние цифры записи степеней семерки чередуются так: 7 - 9 - 3 - 1 и по кругу.
Т.к. оканчивается цифрой 1, то также оканчивается цифрой 1. Тогда число оканчивается цифрой 7.
2) Для степеней четверки закономерность проще - 4 - 6 и по кругу:
Поскольку оканчивается цифрой 6, то также оканчивается цифрой 6.
3) Закономерность для степеней тройки - 3 - 9 - 7 - 1 и по кругу:
Т.к. оканчивается цифрой 7, то также оканчивается цифрой 7.
В итоге слагаемые оканчиваются цифрами 7, 6 и 7 соответственно. Если их сложить, то в разрядке единиц класса единиц получим 0. Т.е. число оканчивается цифрой 0 - следовательно, оно таки делится на 10.
ОТВЕТ: да.
Строим гиперболу и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)
Область определения:
Подставим у=кх в упрощенную функцию.
(*)
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).
2) Если x<0, то и при k<0 это уравнение решений не имеет.
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь , имеем
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек