треугольник, образованный основанием и отрезками биссектрис от вершины до точки пересечения тоже равнобедренный. углы при основании в нем будут по 64:2=32 градуса. значит полный угол при основании в большем треугольнике 64 градуса. тогда при вершине 180-64*2=180-128=52 градуса
Если биссектрисы равных углов, то эти равные углы: 2*(180 - 100)/2 = 80. Углы: 80;80;20. Если же биссектрисы неравных углов, то если равные углы по x, то третий угол 180 - 2x. 180 - 100 = (180 -2x)/2 + x/2 = 90 - x/2; 80 = 90 - x/2; x = 20. Углы: 20,20,140. 2 решения
1) у = -4 + 3/(х - 2) Если рассматривать функцию у = 3/(х -2) , то множество значений у будет (-∞ ;0∨(0; +∞) Учитывая функцию -4 + 3/(х -2), множество значений будет (-∞; -4)∨(-4; +∞) 2) -1 ≤Sin x ≤ 1 |·(-3) 3 ≥ -3Sin x ≥ -3 или -3 ≤ -3Sin x ≤ 3 | +4 1 ≤ 4 - 3Sin x ≤ 7 3) y = | x - 2| -1 Если рассматривать функцию у = | x - 2|, то множество значений будет [0 ; + ∞) -1 показывает, что весь график функции у = |x - 2| сдвинут вниз вдоль оси у на 1 единицу. Значит, множество значений будет [ -1; +∞)
треугольник, образованный основанием и отрезками биссектрис от вершины до точки пересечения тоже равнобедренный. углы при основании в нем будут по 64:2=32 градуса. значит полный угол при основании в большем треугольнике 64 градуса. тогда при вершине 180-64*2=180-128=52 градуса
Если биссектрисы равных углов, то эти равные углы: 2*(180 - 100)/2 = 80. Углы: 80;80;20. Если же биссектрисы неравных углов, то если равные углы по x, то третий угол 180 - 2x. 180 - 100 = (180 -2x)/2 + x/2 = 90 - x/2; 80 = 90 - x/2; x = 20. Углы: 20,20,140. 2 решения
Объяснение:
Два решения вверху
Если рассматривать функцию у = 3/(х -2) , то множество значений у будет (-∞ ;0∨(0; +∞)
Учитывая функцию -4 + 3/(х -2),
множество значений будет (-∞; -4)∨(-4; +∞)
2) -1 ≤Sin x ≤ 1 |·(-3)
3 ≥ -3Sin x ≥ -3
или
-3 ≤ -3Sin x ≤ 3 | +4
1 ≤ 4 - 3Sin x ≤ 7
3) y = | x - 2| -1
Если рассматривать функцию у = | x - 2|,
то множество значений будет [0 ; + ∞)
-1 показывает, что весь график функции у = |x - 2| сдвинут вниз вдоль оси у на 1 единицу. Значит, множество значений будет [ -1; +∞)