Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Можно решить через логарифмы Количество знаков в числе N равно [lg(N)] + 1. Не менее 9 - это больше 8. Не более 11 - это меньше 12 lg(m^3) = 3*lg(m) > 8 lg(m^4) = 4*lg(m) < 12 Сокращаем lg(m) > 8/3 lg(m) < 3 Получаем. lg(m^12) = 3*4*lg(m) = 3*4*8/3 = 32 ответ: 32 знака
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
m^3 >= 100000000 = 10^8
m^4 < 100000000000 = 10^11
Извлекаем корни
m >= 10^(8/3) > 464
m < 10^(11/4) < 563
464^12 ~ 9,9*10^31 - 32 знака
500^12 = 5^12*100^12 = 244140625*10^24 - 32 знака
563^12 ~ 1,01*10^33 - 33 знака
ответ: 32 знака.
Можно решить через логарифмы
Количество знаков в числе N равно [lg(N)] + 1.
Не менее 9 - это больше 8. Не более 11 - это меньше 12
lg(m^3) = 3*lg(m) > 8
lg(m^4) = 4*lg(m) < 12
Сокращаем
lg(m) > 8/3
lg(m) < 3
Получаем.
lg(m^12) = 3*4*lg(m) = 3*4*8/3 = 32
ответ: 32 знака