- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
2sinxcosx-√3cos²x+√3sin²x-√3sin²x-√3cos²x=0
2sinxcosx-2√3cos²x=0
2cosx(sinx-√3cosx)=0
cosx=0⇒x=π/2+πn,n∈z
sinx-√3cosx=0/cosx
tgx-√3=0
tgx=√3⇒x=π/3+πn,n∈z
2
√2(1/√2*sinx+1/√2*cosx)=√2
sin(x+π/4)=1
x+π/4=π/2+2πn
x=-π/4+π/2+2πn
x=π/4+2πn,n∈z
3
Преобразуем 5 cosx +12 sinx в косинус суммы. Для этого умножим и разделиь это выражение на корень из суммы квадратов коэффициентов при cosx и sinx: √(5^2 + 12^2) = 13
5 cosx +12 sinx = 13*(5 cosx +12 sinx) / 13 = 13*((5 / 13) * cosx +(12 / 13)* sinx).
Теперь коэффициенты при cosx и sinx удовлетворяют условию:
корень ((5/13)^2 + (12/13)^2) = 1, т. е. можно принять, что
5/13 = cosφ; 12/13 = sinφ, где φ = arccos(5/13), и тогда
5 cosx + 12 sinx = 13*((5 / 13) * cosx + (12 / 13)* sinx) =
=13*(cosφ * cosx + sinφ * sinx) = 13 * cos(x-φ)
Получили y=13cos(x-φ)
E(y)=13*[-1;1]=[-13;13]
4
sin5x=cos3x
sin5x-sin(π/2-3x)=0
2sin(4x-π/4)*cos(x+π/4)=0
sin(4x-π/4)=0
4x-π/4=πn
4x=π/4+πn
x=π/16+πn/4.n∈z
cos(x+π/4)=0
x+π/4=π/2+πn
x=π/4+πn,n∈z
5
1/2sin2x≥1/2
sin2x≥1 (|sina|≤1)
sin2x=1
2x=π/2+2πn
x=π/4+πn,n∈z