Дана система уравнений:
{x²+xy-12y²=0
{2x²-3xy+y²=90.
Первое уравнение представим так:
x²- (3xy + 4xy) + (-3y*4y) = 0.
Это равносильно разложению на множители:
(x - 3y)(x + 4y) = 0.
Отсюда выразим у = х/3 и у = -х/4, которые подставим во второе уравнение.
Подставим у = х/3.
2x² - 3x(х/3) + (х/3)² = 90,
2x²- x²+ (x²/9)=90,
10x²= 9*90
x = ± 9.
y = ± 9/3 = ± 3.
Найдены 2 корня: х1 = -9, у1 = -3, х2 = 9, у2 = 3.
Подставим у = -х/4.
2x² - 3x(-х/4) + (-x/4)² = 90,
2x²+ (3x²/4)+ (x²/16)=90,
32x² + 12x² + x²= 16*90.
45x²= 16*90
x = √32 = ±(4√2).
y = ± (4√2/4) = ± √2.
Найдены ещё 2 корня: х3 = -(4√2), у1 = √2, х4 = (4√2), у4 = -√2.
ответ: х1 = -9, у1 = -3, х2 = 9, у2 = 3.
х3 = -(4√2), у1 = √2, х4 = (4√2), у4 = -√2.
f'(x) = 3x² +12x
3x² +12x = 0
x(3x +12) = 0
x = 0 или 3х +12 = 0
х = - 4
б)f(x)=2Sinx-x
f'(x) = 2Cosx -1
2Cosx -1 = 0
Cosx = 1/2
x = +-π/3 + 2πk, k ∈Z
2.Найдите промежутки возрастания и убывания функции:
f(x)=x^3-4x^2+5x-1
f'(x) = 3x² - 8x +5
3x² -8x +5 = 0
x₁ = 5/3, x₂=1
-∞ 1 5/3 +∞
+ - + это знаки 3x² -8x +5
при х ∈(-∞;1)∪(5/3; +∞) функция возрастает
при х ∈(1; 5/3) функция убывает
3.Найдите точки экстремума: f(x)= x^2-3/x-2
f'(x) = (2x(x -2) - x²)/(х-2)² = (2х² - 4х -х²)/(х -2)² = (х² -4х)/(х -2)²
(х² -4х)/(х -2)²= 0, ⇒ (х² -4х) = 0 , х₁ = 0, х₂ = 4
(х -2)²≠ 0, х≠2
-∞ 0 2 4 +∞
+ - - + это знаки (х² -4х)/(х -2)²
х = 0 - это точка максимума; х = 4 - это точка минимума , х = 2 - точка разрыва
4. Докажите что функция g(x) на множестве R является: возрастающей если g(x)=2x^5+4x^3+3x-7
g'(x) = 10x⁴ + 12x² + 3
эта производная при любом х положительна, а это значит, что данная функция возрастающая
Дана система уравнений:
{x²+xy-12y²=0
{2x²-3xy+y²=90.
Первое уравнение представим так:
x²- (3xy + 4xy) + (-3y*4y) = 0.
Это равносильно разложению на множители:
(x - 3y)(x + 4y) = 0.
Отсюда выразим у = х/3 и у = -х/4, которые подставим во второе уравнение.
Подставим у = х/3.
2x² - 3x(х/3) + (х/3)² = 90,
2x²- x²+ (x²/9)=90,
10x²= 9*90
x = ± 9.
y = ± 9/3 = ± 3.
Найдены 2 корня: х1 = -9, у1 = -3, х2 = 9, у2 = 3.
Подставим у = -х/4.
2x² - 3x(-х/4) + (-x/4)² = 90,
2x²+ (3x²/4)+ (x²/16)=90,
32x² + 12x² + x²= 16*90.
45x²= 16*90
x = √32 = ±(4√2).
y = ± (4√2/4) = ± √2.
Найдены ещё 2 корня: х3 = -(4√2), у1 = √2, х4 = (4√2), у4 = -√2.
ответ: х1 = -9, у1 = -3, х2 = 9, у2 = 3.
х3 = -(4√2), у1 = √2, х4 = (4√2), у4 = -√2.