1) если в формуле содержатся углы 180° и 360° (π и 2π), то наименование функции не изменяется;
если же в формуле содержатся углы 90° и 270° (π/2 и 3π/2), то наименование функции меняется на сходное (синус на косинус, тангенс на котангенс и т. д.);
2) чтобы определить знак в правой части формулы (+ или—), достаточно, считая угол φ острым, определить знак выражения, стоящего в левой части формулы.
В решении.
Объяснение:
с -3 -2 -1
2с +3 2*(-3)+3= -3 2*(-2)+3= -1 2*(-1)+3 = 1
2(с+3) 2*(-3+3)=0 2*(-2+3)=2 2*(-1+3)=4
(2с)²-3 (2*-3)²-3=33 (2*-2)²-3=13 (2*-1)²-3=1
2(с²-3) 2*((-3)²-3)=12 2*((-2)²-3)=2 2*((-1)²-3)= -4
с 0 1 2 3
2с+3 0+3=3 2*1+3=5 2*2+3=7 2*3+3=9
2(с+3) 2*(0+3)=6 2*(1+3)=8 2*(2+3)=10 2*(3+3)=12
(2с)²-3 (2*0)²-3= -3 (2*1)²-3=1 (2*2)²-3=13 (2*3)²-3=33
2(с²-3) 2*(0²-3)= -6 2*(1²-3)= -4 2*(2²-3)=2 2*(3²-3)=12
Используем формулы привидения
1) если в формуле содержатся углы 180° и 360° (π и 2π), то наименование функции не изменяется;
если же в формуле содержатся углы 90° и 270° (π/2 и 3π/2), то наименование функции меняется на сходное (синус на косинус, тангенс на котангенс и т. д.);
2) чтобы определить знак в правой части формулы (+ или—), достаточно, считая угол φ острым, определить знак выражения, стоящего в левой части формулы.
sin(п-a)/2 cos(п/2+a)
sin(п-a)=sina (во второй четверти sin +)
2 cos(п/2+a)=2(-sina) (во второй четверти cos -)
sina/-2sina=-1/2