1) 12 автомашин.
2) 15 автомашин
3) 5 тонн.
Объяснение:
Пусть х т перевозили на каждой машине фактически, тогда (х+1) т планировали перевозить.
Составляем уравнение и находим х:
60/х - 60/(х+1) = 3
60х + 60 - 60 х = 3х² + 3х
3х² + 3х - 60 = 0
х² + х - 20 = 0
х ₁,₂ = - 1/2 ± √((1/4) + 20) = -1/2 ± 9/2
х = 8/2 = 4 т - фактически перевозили на каждой автомашине;
х+1 = 5 т - планировали перевозить на каждой автомашине.
Теперь отвечаем на все вопросы.
1) Сколько автомашин требовалось сначала?
Сначала требовалось:
60 : 5 = 12 автомашин.
2) Сколько автомашин фактически использовали?
Фактически использовали:
60 : 4 = 15 автомашин
3) Сколько тонн груза планировалось перевозить на каждой машине?
На каждой автомашине планировалось перевозить 5 т груза.
1/6
Вероятность Р=m/n, где n- общее число элементарных исходов, m - число благоприятных элементарных исходов.
При бросании игрального кубика равновероятно наступление следующих шести исходов: - выпадение "1", выпадение "2", выпадение "3", выпадение "4", выпадение "5", выпадение "6". Значит, n=6
Из них только "5" делится без остатка на 5. Значит, m=1
Следовательно, вероятность того, что количество выпавших очков на верхней грани кубика будет числом, которое делится на 5 равна
Р = 1/6.
1) 12 автомашин.
2) 15 автомашин
3) 5 тонн.
Объяснение:
Пусть х т перевозили на каждой машине фактически, тогда (х+1) т планировали перевозить.
Составляем уравнение и находим х:
60/х - 60/(х+1) = 3
60х + 60 - 60 х = 3х² + 3х
3х² + 3х - 60 = 0
х² + х - 20 = 0
х ₁,₂ = - 1/2 ± √((1/4) + 20) = -1/2 ± 9/2
х = 8/2 = 4 т - фактически перевозили на каждой автомашине;
х+1 = 5 т - планировали перевозить на каждой автомашине.
Теперь отвечаем на все вопросы.
1) Сколько автомашин требовалось сначала?
Сначала требовалось:
60 : 5 = 12 автомашин.
2) Сколько автомашин фактически использовали?
Фактически использовали:
60 : 4 = 15 автомашин
3) Сколько тонн груза планировалось перевозить на каждой машине?
На каждой автомашине планировалось перевозить 5 т груза.
1/6
Объяснение:
Вероятность Р=m/n, где n- общее число элементарных исходов, m - число благоприятных элементарных исходов.
При бросании игрального кубика равновероятно наступление следующих шести исходов: - выпадение "1", выпадение "2", выпадение "3", выпадение "4", выпадение "5", выпадение "6". Значит, n=6
Из них только "5" делится без остатка на 5. Значит, m=1
Следовательно, вероятность того, что количество выпавших очков на верхней грани кубика будет числом, которое делится на 5 равна
Р = 1/6.