В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nerminefendieva
nerminefendieva
01.11.2022 17:51 •  Алгебра

Даны два члена арифметической прогрессий 30, 24,18,
a) напишите формулу n-го члена прогрессий
b) определите количество положительных чисел
c) определите количество последовательность сумма которой -78

Показать ответ
Ответ:
малика3024
малика3024
10.10.2020 11:34

Объяснение:

а) a1 = 30, a2 = 24, d = 24 - 30 = -6

Формула n-ого члена: a(n) = 36 - 6n

b) Найдем количество положительных чисел в этой прогрессии

{ a(n) = 36 - 6n > 0

{ a(n+1) = 36 - 6(n+1) < 0

Раскрываем скобки

{ a(n) = 36 - 6n >= 0

{ a(n+1) = 36 - 6n - 6 = 30 - 6n  < 0

Переносим n направо и делим неравенства на 6

{ 6 >= n

{ 5 < n

Очевидно, n = 5

a(5) = 36 - 6*5 = 6

a(6) = 36 - 6*6 = 0

c) Определим количество чисел, если их сумма равна -78.

S = (2a1 + d*(n-1))*n/2 = -78

(2*30 - 6*(n-1))*n = -78*2 = -156

(66 - 6n)*n = -156 = -6*26

Сокращаем на 6

(11 - n)*n = -26

n^2 - 11n - 26 = 0

(n - 13)(n + 2) = 0

Так как n > 0, то n = 13

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота