даны два трехчлена 2x^4-5x^2+7 и x^4+3x^2-8 составьте и преобразуйте в многочлен стандартного вида а) сумму этих трехчленов б)разность второго и первого трехчлена
4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 56 см² больше площади другого. Найдите площадь прямоугольника, если известно, что длина прямоугольника на 4 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 4
у² - х² = 56
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 16 см² больше площади другого. Найдите периметр прямоугольника, если известно, что длина прямоугольника на 2 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 2
у² - х² = 16
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
В решении.
Объяснение:
4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 56 см² больше площади другого. Найдите площадь прямоугольника, если известно, что длина прямоугольника на 4 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 4
у² - х² = 56
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
(х + 4)² - х² = 56
х² + 8х + 16 - х² = 56
8х = 56 - 16
8х = 40
х = 40/8
х = 5 (см) - ширина прямоугольника.
5 + 4 = 9 (см) - длина прямоугольника.
Проверка:
9² - 5² = 81 - 25 = 56 (см²), верно.
2) Найти площадь прямоугольника:
S = 9 * 5 = 45 (см²).
В решении.
Объяснение:
4. На сторонах прямоугольника построены квадраты Площадь одного квадрата на 16 см² больше площади другого. Найдите периметр прямоугольника, если известно, что длина прямоугольника на 2 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 2
у² - х² = 16
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
(х + 2)² - х² = 16
х² + 4х + 4 - х² = 16
4х = 16 - 4
4х = 12
х = 12/4
х = 3 (см) - ширина прямоугольника.
3 + 2 = 5 (см) - длина прямоугольника.
Проверка:
5² - 3² = 25 - 9 = 16 (см²), верно.
2) Найти периметр прямоугольника:
Р = 2(х + у) = 2(3 + 5) =16 (см).