Даны графики функций: y=4х+bи y=-6x+3 Определите наибольшее и наименьшее значение b, при котором точка пересечения данных графиков функций будет находиться в 3 четверти
Обозначим время работы мастера за х часов, а ученика за y часов. Вся работа заняла 8 часов. Имеем первое уравнение: х+y=8. За час мастер делал 120/х деталей, а ученик 40/y деталей. Производительность мастера выше производительности ученика на 20 деталей в час. Имеем второе уравнение: 120/х - 40/y = 20 Получилась система уравнений: х+y=8 120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
Получилась система уравнений:
х+y=8
120/х-40/y=20. Выразив х через y в первом уравнении х=8-y и подставив это значение во второе уравнение, найдем, что y=4, т.е время работы ученика 4 часа. Время мастера тоже равно (8-4) 4 часа. За час мастер делал 120/4=30 деталей, а ученик 40/4=10 деталей.
т.А(0; 0) - точка на оси ОХ, через которую проходит ось симметрии параболы
2) у=(х+2)²
т.А (-2; 0)
3) у=-3(х+2)²+2
т.А (-2; 0)
4) у=(х-2)²+2
т.А (2; 0)
5) у=х²+х+1
Представим функцию у=ах²+bx+1 в виде у=а(х-х₀)²+у₀, где (х₀; у₀) - вершина параболы:
а=1 b=1 c=1
x₀=-b = -1 = -1 =-0.5
2a 2*1 2
y₀=(-0.5)²+(-0.5)+1=0.25-0.5+1=0.25+0.5=0.75
y=x²+x+1=(x-(0.5))²+0.75=(x+0.5)²+0.75
т.А (-0,5; 0)
6) у=3х²-3х+5
а=3 b=-3 c=5
x₀=-(-3)= 1 =0.5
2*3 2
y₀=3*(0.5)²-3*0.5+5=3*0.25-1.5+5=0.75+3.5=4.25
y=3x²-3x+5=3(x-0.5)²+4.25
т.А (0,5; 0)