Задача 1. Можно методом подбора найти эти числа. 11- сумма 5+6 А их произведение - 30. Но если требуется вычислить их, следует составить систему: |а+b=11 |ab=30 Выразим а через b a=11-b Подставим в выражение площади: ab=(11-b)b (11-b)b=30 Получится квадратное уравнение с теми же корнями: Его решение даст тот же результат: 5 и 6. ( Вычисления давать ну буду, они простые) Задача 2) Полупериметр прямоугольника 42:2=21. Методом подбора найдем числа 7 и 14. Система: |а+b=21 |ab=98 Дальнейшее решение по схеме, данной выше. Квадратное уравнение, корни 7 и 14 Задача 3) Подбором числа в третьей задаче найти вряд ли получится, но в принципе решение ничем не отличается от предыдущих. Один катет обозначим а, второй b b=(а+41) По т.Пифагора квадрат гипотенузы равен сумме квадратов катетов. 89²=а²+(а+41)² 89²=a²+a²+82а+ 41² 2a²+82а+ 6240 а²+41а-3120=0 корни уравнения ( катеты) 39 и 80 Найти площадь прямоугольного треугольника по формуле S=ab:2 уже не составит труда.
Можно методом подбора найти эти числа.
11- сумма 5+6
А их произведение - 30.
Но если требуется вычислить их, следует составить систему:
|а+b=11
|ab=30
Выразим а через b
a=11-b
Подставим в выражение площади:
ab=(11-b)b
(11-b)b=30
Получится квадратное уравнение с теми же корнями:
Его решение даст тот же результат: 5 и 6. ( Вычисления давать ну буду, они простые)
Задача 2)
Полупериметр прямоугольника
42:2=21.
Методом подбора найдем числа 7 и 14.
Система:
|а+b=21
|ab=98
Дальнейшее решение по схеме, данной выше. Квадратное уравнение, корни 7 и 14
Задача 3)
Подбором числа в третьей задаче найти вряд ли получится, но в принципе решение ничем не отличается от предыдущих.
Один катет обозначим а, второй b
b=(а+41)
По т.Пифагора квадрат гипотенузы равен сумме квадратов катетов.
89²=а²+(а+41)²
89²=a²+a²+82а+ 41²
2a²+82а+ 6240
а²+41а-3120=0
корни уравнения ( катеты) 39 и 80
Найти площадь прямоугольного треугольника по формуле
S=ab:2 уже не составит труда.
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
(y-4)/(-2-4)=(x-2)/(-1-2)
(y-4)/-6=(x-2)/-3
y-4=2(x-2)
y=2x-4+4
y=2x
условие параллельности прямых
k1=k2 где k1=2
уравнение прямой, проходящей через точку
y-y0=k(x-x0)
y-2=2(x-3)
y=2x-6+2
y=2x-4
2)аналогично, уравнение прямой, проходящей через две точки
(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
(y-1)/(-3-1)=(x-3)/(4-3)
(y-1)/-4=(x-3)
y-1=-4(x-3)
y=-4x+12+1
y=-4x+13
условие перпендикулярности прямых
k1*k2=1 где k1=-4
тогда k2=-1/4
уравнение прямой, проходящей через точку
y-y0=k(x-x0)
y+3=-(x+1)/4
y=-x/4-1/4-3
y=-x/4-13/4